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a b s t r a c t

The equations of a dynamic Mindlin theory for the bending of anisotropic plates are presented. The
elastic coefficients are assumed to satisfy 3D triclinic symmetry conditions plus additional assumptions
in order to deduce the 2D constitutive equations for the plate. The uniqueness is proved in a full weak
form, relative to both space and time co-ordinates, without any assumption of positive-definiteness, on
the basis of the symmetry relations satisfied by the elasticity tensor.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

The different aspects of Mindlin theory of plates has beenwidely
investigated in many papers since decades. Uniqueness results in
the theory of plates are established in various conditions; with or
without positive-definiteness assumption, weak or strong solu-
tions, different cases of anisotropy (monoclinic, orthotropic,
isotropic), Kirchhoff (for thin) or Reissner-Mindlin (for thick) plates,
linear or even non-linear theory (for some particular loads and
shapes of the plate) (Matkowsky and Putnick, 1975; Eringen and
Şuhubi, 1975; Constanda, 1986, 1987; Schiavone, 1991; Bielski and
Telega, 1996; Ciarlet, 1997; Ebenfeld, 1999; Ciarletta, 1999;
Chudinovich and Constanda, 2000; Fu, 2003; Wu, 2004; Mindlin,
2006).

In the above cited papers, in order to prove the uniqueness, the
assumption of a positive definite elasticity tensor is generally ful-
filled, with the exception of Ciarletta (1999), where the symmetry
of the elasticity tensor is used, and Matkowsky and Putnick (1975),
based on the energy integral method. The mentioned assumption
allows to prove uniqueness not only for strong solutions but for
weak solutions also, together with the existence, through powerful
tools as Riesz representation theorem or Lax-Milgram theorem
(when the symmetry is missing, Evans (2010), p. 317).

Concerning specifically Mindlin plates, we mention the inter-
esting uniqueness results for strong solutions, established without

the positive definiteness assumption in Passarella and Zampoli
(2009b) for transversely isotropic plates and Passarella et al.
(2010) for rhombic and strongly elliptic plates. The first result is
proved for a bounded domain of the plate, while the second one
works for both bounded and unbounded domains.

Certain conditions must be satisfied so as a plate theory to be set
up and to work accurately enough. An example of analysis of some
conditions involving the applicability of Reissner-Mindlin and
Kirchhoff-Love bending theories of plates can be found in Arnold
et al. (2002).

In the 3D elastodynamics, a higher variety of results are ob-
tained through different methods, in elasticity, thermoelasticity,
viscoelasticity. If the goal is uniqueness without positive-
definiteness assumption, the Lagrange identity method and the
logarithmic convexity method are very useful. Uniqueness for
strong solutions was obtained with the first method (Brun, 1969;
Rionero and Chiriţ�a, 1987), and uniqueness for strong and weak
solutions resulted with the second one in Levine (1970), respec-
tively Knops and Payne (1968).

Using the positive-definiteness assumption, theorems of exis-
tence and uniqueness were established in Eremeyev and Lebedev
(2013) and Altenbach et al. (2010) for weak solutions defined in
proper energy spaces. The results of these authors hold for equi-
librium, vibration or dynamic problems and for different boundary
conditions of special significance like (partially) clamped, free or
supported elastic bodies with or without surface stresses.

There are more examples of papers where the Lagrange identity
method is used as a main tool. In Knops (2001), uniqueness is* Corresponding author. Tel.: þ40 721 857 823.
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established for strong solutions, supposing only a partial positive
definiteness. In Levine (1977), a uniqueness result is proved for
weak solutions in some Hilbert spaces, without positive definite-
ness or energy conservation law. Uniqueness for strong solutions in
unbounded domains is obtained in Galdi et al. (1986). Analysing
nonsimple thermoelastic materials, Marin et al. (2013) established
the uniqueness also in a strong frame. The Lagrange identity
method is used in Knops (1988), dealing with estimates for
continuous data dependence. In Payne (2006), various mathemat-
ical tools, including the mentioned method, are carefully analysed
in the frame of some improperly posed problems. As a general
conclusion from these papers, this method allows to avoid as-
sumptions like positive definiteness and energy conservation laws.
Lagrange identity method is applied in the present work as well.

A true collection of classical uniqueness results is found in
Knops and Payne (1971), for both elastostatics and elastodynamics
in various conditions as those already mentioned and more. The
weak uniqueness from Knops and Payne (1968) is also recalled.

In the present paper, for an elastodynamic Mindlin plate theory
of bending, we obtain a uniqueness result in a full weak form,
relative to both space and time co-ordinates. The solution is
searched in an appropriate Sobolev subspace, the boundary and the
initial conditions of the dynamic problem being defined in the
sense of trace. In the proof, we use only the symmetry of the elastic
tensor, without positive-definiteness or some conservation law for
the energy. Also, we considered bounded and unbounded time
intervals.

Among the above-cited papers, only Knops and Payne (1968)
and Levine (1977) deal with uniqueness for weak solutions,
avoiding in the same time any assumption of positive-definiteness.
However, their solutions areweak relative to the space co-ordinates
only, being assumed strongly differentiable relative to time.

In the next section, we present the equations of an anisotropic
Mindlin theory. The main result, namely the uniqueness for weak
solutions, is developed in Section 3. Some discussions and con-
clusions are reserved for the Section 4.

2. Notations and equations

We consider a plate of thickness h, for which the middle plane
contains the axes OX and OY of the Cartesian frame, the axis OZ
being perpendicular on this plane, its sense being downwards.
Therefore, the plate is identified with the body volume
V ¼ U� �h=½ 2;h=2�, where U3ℝ2 is a domain (open, bounded,
connected subset with a Lipschitz-continuous boundary vU, Ciarlet,
1988). The smoothness of the boundary has to ensure: s1) a unit
outer normal vector field exists almost everywhere (a.e.) along vU.
s2) the divergence theorem (Green formula) can be applied.

If the set U is a domain, then s1) and s2) are fulfilled. Assump-
tion s1) is necessary to define the normal and the tangent com-
ponents along the boundary of different quantities like rotations,
shear force and bending and twisting moments (see formulas (9),
(10), (11) in this section). The boundary conditions (12) depend
on these components. Green formula allows turning a boundary
integral into an integral on the domain of the plate, in order to
prove that the strong solution defined in this section is weak too (as
defined in the Section 3). The same Green formula is used in the
subsection ii) of Section 3, in the proof of our uniqueness theorem.
The Bernard theorem (2011), which we used in Section 3, requires
Lipschitz-continuous boundary for the domain.

For the points of the middle plane we have x; yð Þ2U and z ¼ 0.
The unit vectors along the three axes OX, OY and OZ are denoted i, j,
respectively k. The plate is supposed non-homogeneous, the den-
sity satisfying r ¼ r(x,y,z) > 0, cðx; y; zÞ2V .

In this section, all the functions are considered differentiable
enough so that the calculations have sense. Thus, we take
Cijkl ¼ Cijkl x; y; zð Þ2C0 Vð Þ∩C1 Uð Þ; r2C0 Vð Þ.

By convention, repeated indices mean summation. The Latin
indices take the values 1,2,3 and the Greek ones take only the values
1,2. In the whole paper, the dot above some quantities means
pointwise (strong) derivative with respect to time. In this section, a
comma in an expression like f,a indicates pointwise derivative with
respect to co-ordinates, namely vf =vx for a ¼ 1 and vf =vy for a ¼ 2.

Customary notations in the theory of elasticity and theory of
plates are used throughout the paper (Ciarlet, 1997; Adams and
Fournier, 2003). For simplicity, when confusions are not possible,
the dependence of the functions on their arguments will not be
written.

Since is about the Mindlin theory of bending, we take the dis-
placements of the form:

u1 ¼ zj1ðx; y; tÞ; u2 ¼ zj2ðx; y; tÞ;
u3 ¼ u3ðx; y; tÞ; ðx; y; tÞ2U� ½0; TÞ; (1)

where 0 < T � ∞ and j1, j2 are rotations around the axes OY
and �OX, respectively. The unknown functions are taken in the set:
ja;u32C2 Uð Þ∩C1ðUÞ∩C2 ½ð 0; TÞÞ.

The equations of motion for the bending of plates (Yu, 1996;
Passarella and Zampoli, 2009b), including the rotatory inertia (the
right terms containing j€b) are:

Mab;a �Qb ¼ rh3

12
j€ b

; b ¼ 1;2; in U� �
0;T

�
;Qa;a þ q ¼ r3hu

€
3;

(2)

Mab being the bending and twisting moments, Qa the shear forces
defined below in Eq. (7) and q the transversal load on the plate,
q2C0ðU� ½0; TÞÞ. In the Eq. (2), the body force along the axis OZ
(normal to the plate) is integrated in the load q (Passarella and
Zampoli, 2009a), while the contribution of the body forces along
the axis OX and OY (in the middle plane of the plate) is neglected.

Also

rh3

12
¼d

Zh=2
�h=2

rz2dz; r3h¼d
Zh=2

�h=2

rdz: (3)

As have been defined, r and r3 are opportune average densities.
We denote with εij and sij, the components εij ¼ ðui;j þ uj;iÞ=2 of the
linearized (infinitesimal) strain tensor and of the stress tensor in
linearized 3D elasticity, respectively.

In order to deduce the constitutive equations for the plate, some
assumptions are made:

e1) C3333 s 0 in V.
e2) The symmetry conditions for triclinic (general anisotropic)

materials are satisfied: Cijhk ¼ Chkij, Cijhk ¼ Cjihk, Cijhk ¼ Cijkh.
e3) In the 3D constitutive equations sij ¼ Cijhkεhk (generalized

Hooke's law), each of the stresses s13 and s23 depend only on
the strain components ε13 and ε23.

e4) The quantities Cabg3 � Cab33C33g3=C3333 are even in z.
e5) The effect of the transversal stress s33 is neglected in the 2D

constitutive equations of the plate.

Remarks 2.1. The conditions e2) take place provided by the
symmetry of the strain and stress tensors (εij ¼ εji, sij ¼ sji) and the
hyperelasticity of the material (i.e. the strain energy does not
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