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a b s t r a c t

This paper is concerned with the problem of uniformly loaded bars in strain gradient elasticity. We study
the deformation of an isotropic chiral bar subjected to body forces, to tractions on the lateral surface and
to resultant forces and moments on the ends. Examples of chiral materials include some auxetic ma-
terials, bones, some honeycomb structures, as well as composites with inclusions. The three-dimensional
problem is reduced to the study of some generalized plane strain problems. The method is used to study
the deformation of a uniformly loaded circular cylinder. New chiral effects are presented. The flexure of a
chiral cylinder, in contrast with the case of achiral materials, is accompanied by extension and bending.
The salient feature of the solution is that a uniform pressure acting on the lateral surface of a chiral
circular elastic cylinder produces a twist around its axis.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

The mechanical behaviour of chiral materials is of interest for
the investigation of carbon nanotubes (see, e.g., Wang and Wang,
2007; Chandraseker et al., 2009; Askes and Aifantis, 2009; Zhang
et al., 2010), auxetic materials (Spadoni and Ruzzene, 2012) and
bones (Lakes et al., 1983; Park and Lakes, 1986). The chiral effects
cannot be described within classical elasticity (Lakes, 2001). The
strain gradient theory of elasticity (Toupin, 1962; Mindlin, 1964;
Mindlin and Eshel, 1968) is adequate to describe the deformation
of chiral elastic solids (Papanicolopulos, 2011 and references
therein).

In this paper we study the deformation of a homogeneous and
isotropic chiral bar in the framework of the strain gradient elas-
ticity. Mindlin (1964) presented three forms of the strain gradient
elasticity. The relations among the three forms have been presented
byMindlin and Eshel (1968). Throughout this paper wewill use the
first form of the strain gradient elasticity. The three forms of the
theory lead to the same displacement equations of motion for
isotropic solids. The constitutive equations of isotropic chiral elastic
solids in the strain gradient theory of elasticity have been estab-
lished by Papanicolopulos (2011). In the present paper we consider
the equilibrium of a right cylinder which is subjected to tractions on

the lateral surface, to body forces, and to resultants forces and
moments on the ends. We assume that the body forces and the
lateral tractions are independent of the axial coordinate. The three-
dimensional problem is reduced to the study of some two-
dimensional problems. The paper is structured as follows. First,
we present the basic equations of isotropic chiral elastic solids and
formulate the problem of uniformly loaded cylinders. Then, we
define the generalized plane strain problem and introduce four
auxiliary plane problems necessary to investigate the deformation
of loaded cylinders. In the following section we establish the so-
lution of the problem of uniformly loaded bar. In the classical
elasticity this problem is known as AlmansieMichell problem and
was studied in various works (Khatiashvili, 1983; Ieşan and
Quintanilla, 2007; Ieşan, 2009). We show that the body forces
and the tractions on the lateral surface produce extension, torsion,
flexure, bending by terminal couples and a plane strain. The solu-
tion is used to study the deformation of a circular cylinder. We
present new chiral effects. It is shown that the flexure of a chiral
cylinder, in contrast with the case of achiral bars, is accompanied by
extension and bending. The salient feature of the solution is that a
uniform pressure acting on the lateral surface of a chiral circular
cylinder produces a twist around its axis.

2. Basic equations

In this section we present the basic equation of isotropic chiral
elastic solids in the first strain-gradient theory and the formulation
of the problem of uniformly loaded cylinders. We consider a body
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that in undeformed state occupies the region B of euclidean three-
dimensional space and is bounded by the surface vB. We refer the
deformation of the body to a fixed system of rectangular axes Oxk,
(k ¼ 1,2,3). Let n be the outward unit normal of vB. Letters in
boldface stand for tensors of an order p� 1, and if v has the order p,
we write vij…k (p subscripts) for the components of v in the Car-
tesian coordinate system. We shall employ the usual summation
and differentiation conventions: Latin subscripts (unless otherwise
specified) are understood to range over the integers (1,2,3),
whereas Greek subscripts to the range (1,2), summation over
repeated subscripts is implied and subscripts preceded by a comma
denote partial differentiation with respect to the corresponding
Cartesian coordinate.

We assume that B is a bounded region with Lipschitz boundary
vB, consisting of a finite number of smooth surfaces. Let Gp be the
intersection of two adjoined smooth surfaces and C ¼ ∪Gp. We
assume that B is occupied by a homogeneous and isotropic chiral
elastic solid. Let u be the displacement vector field. The strain
measures are given by (Mindlin and Eshel, 1968)

eij ¼
1
2
�
ui;j þ uj;i

�
; kijk ¼ uk;ij: (1)

The constitutive equations for isotropic chiral elastic solids are
(Mindlin and Eshel, 1968; Papanicolopulos, 2011).

tij ¼ lerrdij þ 2meij þ f
�
εikmkjkm þ εjkmkikm

�
;

mijk ¼
1
2
a1

�
krridjk þ 2kkrrdij þ krrjdik

�
þa2

�
kirrdjk þ kjrrdik

�
þ 2a3krrkdij

þ2a4kijk þ a5

�
kkji þ kkij

�
þ f
�
εiksejs þ εjkseis

�
;

(2)

where tij is the stress tensor, mijk is the double stress tensor, dij
is the Kronecker delta, εijk is the alternating symbol and
l,m,as,(s ¼ 1,2,…,5), and f are constitutive constants. The terms from
(2) which contain the coefficient f represent the chiral part of the
constitutive equations. The constitutive equations for chiral solids
have been established by Papanicolopulos (2011). In the case of a
centrosymmetric (achiral) material the coefficient f is equal to zero.
The equilibrium equations are

tji;j � msji;sj þ Fi ¼ 0; (3)

where Fi is the body force per unit volume. Following Toupin (1962)
and Mindlin (1964) we introduce the functions Pi,Ri and Qi by

Pi ¼
�
tki � mrki;r

�
nk � Dj

�
nrmrji

�þ ðDknkÞnsnpmspi;
Ri ¼ mrsinrns; Qi ¼

�
mpjinpnq

�
εjrqsr;

(4)

where Di are the components of the surface gradient,
Di ¼ (dik � nink)v/vxk, sk are the components of the unit vector
tangent to C, and 〈g〉 denotes the difference of limits of g from both
sides of C. We denote by B the closure of B. We say that the vector
field uj is an admissible displacement field on B provided
uj 2 C4(B). An admissible system of stresses on B is an ordered
array of functions (tij,mpqr) with the following properties: (i)
tij2C1ðBÞ; mijk2C2ðBÞ; (ii) tij¼ tji, mijk¼ mjik. By an admissible state
on Bwe mean an ordered array of fields A ¼ (ui,eij,kijk,tij,mijk) with
the properties: (i) ui is an admissible displacement field on B; (ii)
eij2C1ðBÞ; kijk2C2ðBÞ; eij ¼ eji; kijk ¼ kjik; (iii) (tij,mijk) is an ad-
missible system of stresses on B. By an external data system on B
we mean an ordered array L ¼ ðFi; ~Pi; ~Ri; ~QiÞ with the properties:
(i) Fi is continuous on B; (ii) ~Pi and ~Ri are piecewise regular on vB;

(iii) ~Qi is piecewise regular on C. We say that A¼ (ui,eij,kijk,tij,mijk) is
an elastic state corresponding to the body force Fk if A is an ad-
missible state that satisfies the Equations (1)e(3) on B. The trac-
tion problem of elastostatics consists in finding an elastic state
that corresponds to the body force Fi and satisfies the boundary
conditions

Pi ¼ ~Pi; Ri ¼ ~Ri on vB\C; Qi ¼ ~Qi on C; (5)

where ~Pi; ~Ri and ~Qi are prescribed functions.
The potential energy density for isotropic chiral materials is

given by

W ¼ 1
2
lerrejj þ meijeij þ a1kiikkkjj þ a2kijjkirr þ a3kiirkjjr

þ a4kijkkijk þ a5kijkkkji þ 2f εikmeijkkjm:
(6)

Inwhat follows we assume that the elastic potential is a positive
definite quadratic form in the variables eij and kijk. The restrictions
imposed by this assumption on the constitutive coefficients have
been presented by Mindlin and Eshel (1968) and Papanicolopulos
(2011). The necessary and sufficient conditions for the existence
of a solution of the traction problem are (Hlavacek and Hlavacek,
1969)

Z
B

Fidvþ
Z
vB

~Pidaþ
Z
C

~Qids ¼ 0;

Z
B

εijkxjFkdvþ
Z
vB

εijk

�
xj~Pk þ nj~Rk

�
daþ

Z
C

εijkxj ~Qkds ¼ 0:
(7)

We assume that the region B from here on refers to the
interior of a right cylinder of length h with the cross-section S

and the lateral boundary P. Let G be the boundary of S. The
Cartesian coordinate frame is supposed to be chosen in such a
way that x3-axis is parallel to the generators of B and the x1Ox2
plane contains one of terminal cross-sections. We denote by S1
and S2, respectively, the cross-section located at x3 ¼ 0 and
x3 ¼ h. We denote by Ga the boundary of the cross-section Sa. We
assume that the lateral surface P is smooth, so that Qi is equal to
zero on P. We shall use Saint-Venant's approach of the problem
of elastic cylinders which is based on a relaxed statement in
which the pointwise assignment of the terminal tractions is
replaced by prescribing the corresponding resultant force and
resultant moment. We assume that the cylinder is subjected to
body forces, to tractions on the lateral surface and to appropriate
global conditions on the ends. The conditions on the lateral
boundary are

Pi ¼ ~Pi; Ri ¼ ~Ri on P: (8)

Let F ¼ ðF1;F2;F3Þ and M ¼ ðM1;M2;M3Þ be prescribed
vectors representing the resultant force and the resultant moment
about O of the tractions acting on S1. On S2 there are tractions
applied so as to satisfy the equilibrium conditions of the body. For
the end located at x3 ¼ 0 we have the following conditions

Z
S1

Padaþ
Z
G1

Qads ¼ Fa; (9)

Z
S1

P3daþ
Z
G1

Q3ds ¼ F3; (10)
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