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a b s t r a c t

In this paper, an analytical approach is developed for the fracture analysis of linear viscoelastic media. By
the Laplace transform, the governing equations for the time domain (t-domain) are changed into fre-
quency domain (s-domain). Then, a Hamiltonian system is established by introducing the dual variables
of displacements and energy variational principle. In the framework of symplectic mathematics, the
unknown vector consisting of displacements and stresses is expanded in terms of symplectic eigenso-
lutions whose coefficients can be determined from the outer boundary conditions. Then t-domain so-
lution is finally obtained by inverse Laplace transform and exact forms of fracture parameters including
stress intensity factor (SIF) and J-integral are derived simultaneously. Numerical examples are provided
to verify the validity of the present method. A parametric study of viscoelastic parameters and outer
boundary conditions is carried out also.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Viscoelastic materials such as asphalt, epoxy and solid pro-
pellants have been widely applied in many fields including civil
engineering, electronic packaging, aerospace etc. (Dave et al., 2011;
Duan et al., 2011; Lei et al., 2012; Lu and Wright, 1998; Wang et al.,
1998). Especially, some elastic materials also appear viscoelastic
property under high temperatures and pressures. Therefore, the
fracture resistance associated with time of such materials is more
concerned. Atkinson and Craster (1995) elaborated various topics in
fracture mechanics in the inelastic materials in 20th century, the
fracture parameters such as SIFs and energy release rates were all
reviewed. In the past decade, a number of the theoretical works and
numerical methods have been carried out by many researchers.
Greenwood (2004) applied Schapery's principles (Schapery, 1975,
1984) to the particular case of a MaugiseDugdale surface force
law and a three-element viscoelastic solid. Nguyen et al. (2005)
proposed a material force method to evaluate the energy release
rate and work rate of dissipation for fracture in inelastic materials.
Dubois and Petit (2005) developed a new path-independent inte-
gral Gqy which allowed us to compute the energy release rate. Chen

and Atkinson (2005) reduced the fracture problem of a penny-
shaped crack embedded in the central layer of a composite visco-
elastic material to a singular integral equation. Pitti et al. (2007,
2008) and Pitti et al. (2009) proposed a fracture algorithm uncou-
pling viscoelastic incremental formulation and the fracture proce-
dure for the creep crack growth process in a viscoelastic medium.
Bouchbinder and Brener (2011) calculated the scaling properties
of the quasi-static energy release rate and the viscoelastic contri-
bution to the facture energy of various biological composites, using
both perturbative and non-perturbative approaches. In addition,
the viscoelastic functionally graded material (FGM) recently
attracted increasing attention in the field of viscoelastic fracture
analysis. Jin and Paulino (2002) used the correspondence principle
to study the cracks in a viscoelastic strip of a functionally graded
material (FGM) under tensile loading conditions. In the same
manner, Wang et al. (2014) investigated crack problem in visco-
elastic FGMs with general mechanical properties. Besides, the
experimental methods and numerical simulations are also effective
ways to predict the fracture behaviors of viscoelastic materials. The
fracture responses of viscoelastic material were examined by
various techniques (Danton, 2002; Yoneyama and Takashi, 2002;
Sakaue et al., 2008; Gao et al., 2011). Numerical approaches such
as the finite element method (FEM) (Pan et al., 2009; Zhang et al.,
2010; Dave et al., 2011; Yu and Ren, 2011; Duan et al., 2011; Lei
et al., 2012) and boundary element method (BEM) (Wang and* Corresponding author. Tel.: þ86 13842853461; fax: þ86 0411 84708393.
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Birgisson, 2007; Syngellakis and Wu, 2008; Chen and Hwu, 2011)
were introduced in this area to deal with the complicated boundary
value problems. Although many achievements have been made in
this area, the theoretical studies were mainly performed based on
the correspondence principle between elasticity and viscoelasticity.
The exact solutions of cracked viscoelastic media were limited by
the complicated equations and boundary conditions. Especially, the
current fracture analysis approach for viscoelastic materials be-
longs to the Lagrangian system with a single variable. The com-
ponents of displacements and stresses cannot be obtained
simultaneously. Moreover, experiments in viscoelastic materials
will result in high consumption and numerical simulations cannot
give the simple expression as analytical model to provide guide in
this area.

So there is still a need for developing analytical method to find
the exact solutions which could allow us a better understanding of
the fracture behaviors. In this paper, a direct analytical symplectic
approach is introduced to the fracture analysis of linear viscoelastic
materials. The symplectic approach was first proposed by Zhong
and his collaborators (Li et al., 2013a, 2013b; Lim and Xu, 2010; Yao
et al., 2009; Zhong et al., 2009) and has been applied to the fracture
mechanics (Leung et al., 2009; Zhou et al., 2013) and viscoelasticity
(Xu et al., 2006). In the symplectic space, the unknown vector is
composed of the displacement and stress functions and can be
solved simultaneously.

The paper is organized as follows. Firstly, the basic problem is
stated and the Laplace transform is taken to convert the funda-
mental equations from t-domain to s-domain. Secondly, the
resulting equations are put into the Hamiltonian form for variable
separation. The eigensolutions are found and the particular integral
is obtained by the eigenfunctions expansion. Thirdly, the solution is
solved and transformed back into the t-domain by using the inverse
Laplace transform. Lastly, numerical examples are shown to vali-
date the efficiency and accuracy of the symplectic approach. In
addition, the discontinuous complex outer boundary conditions are
included.

2. Basic problem

In the linear viscoelasticity theory, the equilibrium equations for
static loading conditions, and the strain-displacement relations for
the small deformations are written as

sij;jðtÞ þ fiðtÞ ¼ 0; (1)

εijðtÞ ¼
�
ui;jðtÞ þ uj;iðtÞ

��
2 (2)

in which ui, sij and εij are the displacement, stress and strain
components respectively. The constitutive equations can be
expressed in a differential form as�
PKðtÞskkðtÞ ¼ QKðtÞεkkðtÞ
PGðtÞsijðtÞ ¼ QGðtÞeijðtÞ

(3)
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i=vti are the differential operator
polynomials (Zhang, 2006), skk and εkk are the volumetric stress
and strain respectively, sij and eij are the deviatoric components of
the stress and strain tensors. The relationships among them are

sij ¼ sij � skkdij
�
3; eij ¼ εij � εkkdij

�
3 (4)

where dij is Kronecker delta which equals to one when i¼ j and
equals to zero otherwise.

By using the Laplace transform, Eq. (3) can be transformed into
the s-domain. Using the over-bar to identify the variables for the s-
domain, the transformed constitutive equations are�
skkðsÞ ¼ 3KðsÞεkkðsÞ
sijðsÞ ¼ 2GðsÞeijðsÞ (5)

where KðsÞ ¼ L½KðtÞ� ¼ Q
KðsÞ=½3PKðsÞ� and GðsÞ ¼ L½GðtÞ� ¼ Q

GðsÞ
=½2PGðsÞ� are the bulk modulus and shear modulus in the s-domain,
respectively. For simplification, it can be assumed that the material
behaves elastically in dilatation, i.e., KðtÞ ¼ KðsÞ ¼ K is constant; or
the corresponding Poisson's ratio is constant and there is a relation
between GðsÞ and KðsÞ, i.e., GðsÞ ¼ 3ð1� 2yÞKðsÞ=½2ð1þ yÞ� (Wang
and Birgisson, 2007).

For the two-dimensional viscoelastic problem, the polar coor-
dinate (r, q) is selected such that the r-axis is along the radial di-
rection with origin located at the central point of the circular
domain in Fig.1. The crack surfaces are along q¼±p and assumed to
traction free. The equilibrium equations, strain-displacement re-
lations and constitutive equations of the linear viscoelasticity for
the s-domain can be obtained from Eqs. (1), (2) and (5), and they are�
vrsrr þ vqsrq=r þ ðsrr � sqqÞ=r þ f r ¼ 0
vqsqq=r þ vrsrq þ 2srq=r þ f q ¼ 0

; (6)

Nomenclature

ui component of displacements
sij, εij component of stresses and strains
sij, eij component of deviatoric stresses and deviatoric

strains
h coefficient of viscosity
G shear modulus
K bulk modulus
y Poisson's ratio
(x1, x2) Cartesian coordinates
(r, q) Polar coordinates
H Hamiltonian function
q, p mutually dual vectors
H Hamiltonian operator matrix
m eigenvalue of Hamiltonian matrix
j
ðaÞ
n , jðbÞ

n eigensolution of a and b group
KI, KII Mode I and II stress intensity factors
Jint J-integral

Fig. 1. The edge-cracked circular domain.
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