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a b s t r a c t

In this paper, nonlinear free vibration analysis of simply-supported nanoscale beams incorporating
surface effects, i.e. surface elasticity, surface tension and surface density, is studied using the nonlocal
elasticity within the frame work of EulereBernoulli beam theory with von k�arm�an type nonlinearity. A
linear variation for the component of the bulk stress, szz, through the nanobeam thickness is used to
satisfy the balance conditions between the nanobeam bulk and its surfaces. An exact analytical solution
to the governing equation of motion is presented for natural frequencies of nanobeams using elliptic
integrals. The effect of the nanobeam length, thickness to length ratio, mode number, amplitude of
deflection to radius of gyration ratio and nonlocal parameter on the normalized natural frequencies of
aluminum and silicon nanobeams with positive and negative surface elasticity, respectively, is investi-
gated. It is observed that the surface effects increase natural frequencies of the aluminum nanobeam for
all values of the amplitude ratio and the silicon nanobeam at low amplitude ratios while at higher
amplitude ratios the surface effects decrease the natural frequencies of the silicon nanobeam. Also, for all
values of amplitude ratios, the normalized fundamental natural frequencies of silicon and aluminum
nanobeams vary linearly with respect to the nonlocal parameter while this is not the case at higher mode
numbers.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Owing to their high surface-to-volume ratio, nano-scale struc-
tures exhibit superior mechanical, electrical and thermal perfor-
mances than their micro- and/or macro-scale counterparts. In
micro/nano electromechanical systems (MEMS/NEMS), they are
widely used in many areas, including communications, machinery,
information technology, biotechnology and etc. (Evoy et al., 1999;
Lavrik et al., 2004). An important phenomenon that has attracted
considerable attention in the literature is the size-dependent me-
chanical behavior of nanobeams due to the surface effects or/and
small scale effects.

In classical continuum mechanics, the influences of surface
energy are ignored as they are small compared to the bulk energy.
For nanoscale materials and structures, however, the surface effects

become significant due to the high surface/volume ratio. Both the
atomistic simulations and experimental evaluations strongly sug-
gest that the ratio of surface to volume plays a critical role in nano-
sized problems. To account for the effect of surfaces/interfaces on
mechanical deformation, the surface elasticity theory which con-
siders the surface elasticity, surface stress, and surface density as
the surface effects is presented by modeling the surface as a two
dimensional membrane adhering to the underlying bulk material
without slipping (Gurtin and Murdoch, 1975; Gurtin et al., 1998).
Based on this model one important issue is how it is possible to
satisfy the balance condition between the nanobeam bulk and its
surfaces. To this end, Lu et al. (2006) and Lü et al. (2009) proposed a
linear and cubic variation for the normal stress, szz, along the
thickness of homogenous and functionally graded materials (FGM)
nanobeams, respectively. There are many studies considering the
surface elasticity theory for wave propagation, buckling, and free
linear and nonlinear vibration analyses of nanobeams and CNTs
based on different beam theories (Assadi and Farshi, 2011; Fu et al.,
2010; Gheshlaghi and Hasheminejad, 2011; Guo and Zhao, 2007;
Hosseini-Hashemi et al., 2014a; Hosseini-Hashemi and
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Nazemnezhad, 2013; Hosseini-Hashemi et al., 2014b; Lei et al.,
2012; Liu and Rajapakse, 2010; Malekzadeh and Shojaee, 2013;
Nazemnezhad and Hosseini-Hashemi, 2014a; Nazemnezhad et al.,
2012; Park, 2012; Ren and Zhao, 2004; Song et al., 2011; Wang and
Feng, 2007, 2009). However on one hand the surface elasticity
theory considers the surface elasticity, surface stress, and surface
density as the surface effects, and on the other hand satisfying the
balance condition is an important issue in the theory, but most of
the studies examine only the surface elasticity and stress effects
and there are a few works focusing on the influences of the surface
density and satisfying the balance condition as well as the surface
elasticity and stress effects (Hosseini-Hashemi et al., 2014a;
Hosseini-Hashemi and Nazemnezhad, 2013; Hosseini-Hashemi
et al., 2014b; Lu et al., 2006; Nazemnezhad and Hosseini-
Hashemi, 2014a; Nazemnezhad et al., 2012).

The nonlocal continuum mechanics (Eringen, 1972, 1983, 2002;
Eringen and Edelen, 1972) accounts for the small scale effect by
considering the stress state at a given point to be a function of the
strain field at all points in the body. Therefore, this continuum
theory not only is suitable for modeling submicro- or nano-sized
structures, but also avoids enormous computational efforts when
compared with discrete atomistic or molecular dynamics simula-
tions. Many researchers have applied the nonlocal elasticity
concept for the wave propagation (Wang and Hu, 2005; Wang,
2005), bending, buckling, and vibration (Ece and Aydogdu, 2007;
Lim et al., 2010; Maachou et al., 2011; Mohammadi and
Ghannadpour, 2011; Nazemnezhad and Hosseini-Hashemi, 2014b;
Reddy, 2007, 2010; Wang et al., 2007; Xu, 2006) analyses of beam-
like elements in micro- or nano electromechanical systems. For
example, Reddy (2007) applied the Eringen nonlocal elastic
constitutive relations to derive the equation of motion of various
kinds of beam theories (i.e. EulereBernoulli, Timoshenko, Reddy
and Levinson) and proposed analytical and numerical solutions on
static deflections, buckling loads, and natural frequencies of nano-
beams.

From literature survey, it can be found that there are few papers
in which both surface and small scale effects on static and dynamic
behaviors of nanostructures and CNTs are taken into account
(Hosseini-Hashemi et al., 2014b; Lee and Chang, 2010; Lei et al.,
2012; Malekzadeh and Shojaee, 2013; Wang and Wang, 2011).
Hosseini-Hashemi et al. (2014b) considered all parameters of the
surface effects on the nonlinear free vibration analysis of simply-
supported functionally graded EulereBernoulli nanobeams using
nonlocal elasticity theory. In addition, they satisfied the balance
conditions between FG nanobeam bulk and its surfaces by
assuming a cubic variation for the component of the normal stress
through the FG nanobeam thickness. The governing equations had
solved by using the multiple scales method and only the funda-
mental natural frequency had reported. In another work,
Malekzadeh and Shojaee (2013) studied the surface and nonlocal
effects on the nonlinear flexural free vibration of elastically sup-
ported non-uniform cross section nanobeams. In the work, only the
surface elasticity and the surface stress of the surface elasticity
theory were considered and the balance condition was not satis-
fied. The fundamental natural frequencies were also obtained by
using the differential quadrature method (DQM).

The main purpose of the present work is to propose a compre-
hensive analytical model to study the surface effects, including
surface elasticity, surface tension and surface density, on the
nonlinear free vibration of nanoscale EulereBernoulli beams using
nonlocal elasticity. The von K�arm�an geometric nonlinearity is taken
into account with the assumption of linear variation of normal
stress through the thickness. The governing equations are derived
by using the Hamilton's principle and solved by using the exact
solution, elliptic integrals. The surface and small scale effects on the

nonlinear natural frequencies of nanobeams are examined for
different nanobeam dimensions, vibration amplitudes and thick-
ness ratios.

2. Problem formulation

2.1. Nonlocal elasticity theory

As mentioned earlier, in the nonlocal theory, the stress in a
material body point is a function of strain field of the same point
and all other ones in material domain; Thus, the stress tensor plays
the essential role in this continuum theory which is defined as
(Eringen, 2002):

tij ¼
Z
v

aðjx0 � xjÞsijðx0ÞdV 0 (1)

where the volume integral is taken over the body region V; x is the
reference point in body which the stress tensor is calculated at any
other point like x0 in the body; i, j ¼ x, y, z for three dimensional
Cartesian coordinate; sij is the local stress tensor and a(jx0 � xj) is
nonlocal kernel function depends on internal characteristic length.
Eringen proposed a(jx0 � xj) as a Green function of a linear differ-
ential operator L as:

L aðjx0 � xjÞ ¼ dðjx0 � xjÞ (2)

Substituting Eq. (2) into Eq. (1), the integral forms of nonlocal
stress tensor reduces to the differential one as follows:

L tij ¼ sij (3)

The linear operator is an approximate model of the kernel ob-
tained bymatching the Fourier transforms of the kernel in thewave
number space with the dispersion curves of lattice dynamics. For
curve-fitting at low wave numbers relevant to the small internal
length scale Eq. (2) is written as:�
1� ε

2V2 þ g4V4 �…

�
tij ¼ sij

Thus, the linear operator becomes:

L ¼
�
1� ε

2V2 þ g4V4 �…

�
(4)

Where 3and g are small parameters proportional to the internal
length scale. If first order approximation is to be considered, just
the Laplacian form of the operator in Eq. (4) is maintained
(Alavinasab, 2009). So for the two-dimensional case:

L ¼ 1� ðe0lÞ2V2 (5)

In which l is internal length and e0 is material constant which is
defined by the experiment and V2 ¼ v2/vx2þ v2/vy2 is the two-
dimensional Laplacian operator.

Equations of motion for nonlocal linear elastic solids are ob-
tained from nonlocal balance law as:

tij;j þ fi ¼ r€ui (6)

where fi and ui are the components of the body force and
displacement vector respectively and r is the mass density. Using
Eq. (3) in Eq. (6) the nonlocal equations of motion in a differential
form can be expressed by:

sij;j þ L ðfi � €uiÞ ¼ 0 (7)
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