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a b s t r a c t

Elliptic effective strength criteria in the mean-deviatoric stress plane are encountered in porous media
for a granular material made of rigid grains with cohesive frictional interfaces or a material with pores in
a DruckerePrager matrix. The macroscopic strength criterion of a heterogeneous material comprising a
matrix with elliptic strength criterion reinforced by rigid inclusions with perfect or imperfect interfaces
is studied. Considered imperfect interfaces follow either a Tresca or a MohreCoulomb strength criterion.
Derived macroscopic criteria are shown to be a combination of a larger ellipse, which corresponds to the
criterion for perfectly bounded interfaces, conditionally truncated by a smaller ellipse resulting from the
activation of interfacial mechanisms. The activation of the interfacial mechanisms depends on the matrix
and interfaces strength properties, inclusions concentration, as well as the macroscopic strain triaxiality
ratio.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Imperfect interfaces between constituents of heterogeneous
media are increasingly understood to play a major role on the
effective strength properties. Such imperfect interfaces can be
characterized by a criterion the stress vector acting on the interface
must not exceed. Thanks to homogenization methods, the strength
of granular geomaterials has been investigated, successively
considering the cases of rigid grains interfaced by a Tresca criterion
(Dormieux et al., 2007), a2 frictional criterion (Maalej et al., 2009)
or a cohesive frictional criterion (He et al., 2013), as well as the
competition between Tresca interfacial and Von Mises intra-
granular strength (Dormieux et al., 2010).

Additionally, several types of porous media have been recog-
nized to be governed by an elliptic effective strength criterion in the
mean-deviatoric stress plane. For example, a composite made of
pores in a matrix with a Von Mises (Barth�el�emy, 2005) or Druck-
erePrager (Barth�el�emy, 2005; Maghous et al., 2009) strength cri-
terion has an elliptic macroscopic strength criterion. Above a
critical porosity threshold, the granular material with cohesive

frictional interfaces considered in He et al. (2013) also proves to
follow a similar criterion. Elliptic strength criteria are thus of great
interest in geomechanics, for instance to describe the clay matrix of
a shale. However, it is worth noting that this class of elliptic
strength criteria is obtained only by applying the so-called modi-
fied secant modulii approach (Suquet, 1995) to the homogenization
of ductile porous materials, which is precisely the method we
intend to adopt in the present work for a second homogenization
step. A Gurson-type analysis (Gurson, 1977) of the strength of
porous materials would have led to the use of a different criterion
for the clay matrix, but will not be considered here.

Driven by the thought-of example of shales for which the clay
matrix is reinforced by silica or calcite inclusions (Fig. 1), the
macroscopic strength of a material made of amatrix with an elliptic
strength criterion reinforced by rigid inclusions is yet to be inves-
tigated. Furthermore, the degradation of this reinforcement, com-
ing from matrixeinclusion interface imperfections, is of critical
interest. The case of perfect interfaces will be compared to Tresca or
MohreCoulomb interfaces. The present work addresses the
imperfection of the interfaces under the hypothesis of ductility,
whereas matrixeinclusion debonding had previously been studied
in the context of fracture mechanics (see e.g. Manti�c (2009) and
Greco et al. (2013)).

This paper aims at addressing this strength issue using contin-
uum micromechanics. From a technical point of view, Barth�el�emy
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and Dormieux (2004) developed a strength homogenization
method in which the macroscopic stress states lying on the
boundary of the effective strength criterion domain are obtained by
solving a fictitious non linear viscous problem. In turn, the non
linear problem can be solved using secant or affine methods
(Suquet, 1995, 1997) which rely on the solution to the associated
linear problem. These methods proved successful to predict the
strength of heterogeneous material, even in the presence of inter-
face effects (Barth�el�emy, 2005; Barth�el�emy and Dormieux, 2004;
Dormieux et al., 2010, 2006. 2007; He et al., 2013; Maalej et al.,
2009; Maghous et al., 2009; Sanahuja and Dormieux, 2005).

To start with, the homogenization method is briefly recalled and
the fictitious non linear problem is derived from the strength
properties of the components in Section 2.

Next, the non linear homogenization method is presented in
Section 3 after resolution of the linear problem underlying the
fictitious problem arising from the previous section.

Finally, the macroscopic strength criteria are derived in Section
4 in the case of perfect, Tresca or MohreCoulomb interfaces.

Notations The second and fourth order identity tensors are
respectively denoted by 1 and I. The volumic and deviatoric pro-
jection tensors J and K are defined as J ¼ 1

3 151 and K ¼ I� J.

2. Limit state equations

2.1. Methodology

The aim of this article is to determine the effective strength of a
composite made of a matrix reinforced by rigid inclusions with
imperfect matrixeinclusion interfaces. A representative elemen-
tary volume (rev) U of this composite is introduced. It comprises a
matrix (phase Um) and rigid inclusions (phase Ui) with volume
fraction r. Locally, the unit normal to the interface directed out-
wards from the inclusion is noted n. The volume averages of a
function a over the rev U, the matrix phase Um, the inclusionary
phase Ui, and all the interfaces G are respectively denoted aU ¼ a,
am, ai and aG.

A macroscopic stress state S applied toU is said to be admissible
provided that there exists some microscopic stress field s(z)
defined on the rev U which meets the following conditions (de
Buhan, 1986; Suquet, 1983):

divs ¼ 0 ðcz2UÞ
sðzÞ2GðzÞ ðcz2UÞ
s ¼ S

(1)

where G(z) denotes the domain of admissible microscopic stress
states at point z in the rev U. The set of admissible macroscopic
stress states is denoted by Ghom.

The strength properties of the constituents at the microscopic
scale therefore need to be characterized. The domain Gm of ad-
missible stress states in thematrix is defined by a strength criterion
fm(s) such that:

s2Gm⇔fmðsÞ⩽0:
In turn, the inclusions are supposed infinitely resistant. The

emphasis of this paper is put on the limited strength of the
matrixeinclusions interfaces: The inclusions may be not perfectly
bounded to the matrix; instead, the strength of the interface is
described by a criterion on the stress vector T acting on the
matrixeinclusion interface:

T2GG⇔fGðTÞ⩽0:
G denotes the set of matrixeinclusion interfaces and GG defined

above is the set of admissible stress vectors.
Equivalently, the domains Gm and GG may be characterized by

their support functions (Dormieux et al., 2006; Salencon, 1990).
This is the so-called dual formulation. The support function pm(d)
of the matrix strength is defined as

pmðdÞ ¼ supfs : d; fmðsÞ⩽0g;

where d and pm(d) physically represent a virtual strain rate and the
associated dissipation. Likewise, the support function pGðEvFÞ of the
interface criterion is

pGðEvFÞ ¼ supfT : EvF; fGðTÞ⩽0g;

where EvF and pGðEvFÞ physically represent a virtual velocity jump
across the interface and the associated dissipation.

The direct use of the definition (1) for the determination of Ghom

is uneasy. Alternatively, as shown in Leblond et al.
(1994),Barth�el�emy and Dormieux (2004), the boundary vGhom of
the macroscopic strength criterion can be retrieved by solving the
following boundary value problem defined on the rev U

divs ¼ 0 ðUÞ

s ¼ vpm

vd
ðUmÞ

T ¼ vpG

vEvF
ðGÞ

s ¼ Ci : d ðUiÞ with Ci/∞

vðzÞ ¼ D$z ðvUÞ
d ¼ gradsv ðUÞ

(2)

This boundary value problem may be interpreted as a fictitious

Fig. 1. Example of thought-of material. Cohesive frictional granular material reinforced by rigid particles with imperfect interfaces. According to the separation of scale principle,
rmicro ≪ rmeso. This paper deals with upscaling from meso to macro scales.
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