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a b s t r a c t

In this article, we study the onset of the development of plastic necking instabilities during dynamic
tension tests on metallic plates biaxially loaded in their plane. This model applies whatever the thick-
ness. The material is supposed to be homogeneous, isotropic, incompressible, elastoviscoplastic, to satisfy
Von Mises' plasticity criterion and normality flow rule (damage and heat conduction are neglected). As
Dudzinski and Molinari did in 1988 for static tests on very thin plates in the framework of generalized
plane stress theory (thickness is supposed to vary slowly and slightly along loading directions) (Insta-
bilit�e de la d�eformation viscoplastique en chargement biaxial, 1988, Compte Rendu �a l'Acad�emie des
Sciences de Paris 307, s�erie 2, pages 1315e1321), we carry out a linear stability analysis. The flow is
viewed as the sum of the mean homogeneous flow of the perfect plate, and of small perturbations d v! of
the velocity field, periodic along the x1� and x2� loading directions, growing exponentially. We search
for the most unstable pair of wavelengths ðlðdÞ1 ; l

ðdÞ
2 Þ and for the associated growth-rate q(d) (the

dominant mode). Plastic deformation concentrates preferably along zero rate extension lines for non
positive velocity gradient ratio a ¼ D22=D11 (D denoting deformation rate tensor), and along lines par-
allel to minor principal stress direction for biaxial stretching (a > 0). For sufficiently viscous materials,
inertia plays a negligible role (maximum plastic strain-rate considered in this paper equals 20 s�1, and
thickness does not exceed 2 cm), the wavelength associated with the dominant mode is much greater
than thickness, and Dudzinski and Molinari's model gives the associated growth-rate very accurately.
This growth-rate is a root of a polynomial equation, that we re-establish starting from the equations of
our 3D model. For non viscous materials, inertia is no longer negligible for non positive values of a.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the present article, we are interested in the onset of plastic
necking instabilities during dynamic tension tests on metallic
plates biaxially loaded in their plane, with constant velocities
±V01 e1

�! and ±V02 e2
�! applied at their edges (see Fig. 1). We carry

out a 3D linear stability analysis (it applies whatever the thickness),
and calculate the growth-rate of small perturbations d v! of the
velocity field of the mean homogeneous flow of the perfect plate,
symmetrical with respect to the median plane (and therefore
representative of local thinnings), periodic along the x1� and x2�
loading directions, growing exponentially (see Fig. 2). We get the
dominant mode e i.e. the most unstable pair of wavelengths (l1, l2)
e and therefore the plastic deformation localization zones.

The material is supposed to be homogeneous, isotropic, incom-
pressible, elastoviscoplastic, to obey Von Mises (1913) plasticity

criterion and normality flow rule. Its yield strength Y depends on
plastic strain 3p, plastic strain-rate _3p and absolute temperature TK.
Its shear modulus G depends on TK. Damage, thermal expansion and
heat conduction are neglected. The flow is supposed to be adiabatic,
and plastic work is fully converted into heat.

In this framework, the main results are:
1. for non positive strain-rate ratio a (�1 � a ¼ D22/D11 � 0) (D

denotes deformation rate tensor), plastic strain concentrates
along zero rate extension lines, that are inclined at Hill's angle
with respect to minor principal stress direction x2 (Hill, 1952):

jHill ¼ arctanðn2=n1Þ ¼ arctan
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�D22=D11
p �

(1)

This localization is observed in numerous experiments (Nad�ai,
1950), for isotropic materials. For static tests on very thin plates,
it was shown by Hill (1952), with a bifurcation analysis, for a non
viscous rigid plastic material (G infinite) obeying Hollomon'sE-mail address: dominique.jouve@cea.fr.
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constitutive law ðYf 3np; n>0Þ (Hollomon,1945), that, as elongation
31 reaches the value:

3
�
1 ¼ n

1þ D22=D11
(2)

localization bands, whose orientation is given by Hill's angle,
appear instantaneously. In 1988, carrying out a linear stability
analysis, Dudzinski and Molinari (1988) retrieved plastic defor-
mation localization along zero rate extension lines with these hy-
potheses. They showed that, when elongation 31 tends to 3�1, the
dominant mode's angle tends to Hill's angle, and the related
growth-rate tends to infinity.

Both analyses were carried out in the framework of generalized
plane stress theory (Hill, 1950; Hodge, 1951); the plate is supposed
to be very thin; thickness is supposed to vary slowly and slightly
along the loading directions, and the space between localization
lines is supposed to be much greater than thickness. Our 3D anal-
ysis retrieves the orientation of the localization lines following
Hill's angle. Due to inertia, for non-viscous materials and as long as
work-hardening prevails against thermal softening, localization
occurs in a finite duration, and the dominant mode's wavelength is
an intermediate one.

2. for positive strain-rate ratios (0 < a < 1), plastic deformation
concentrates along lines parallel to minor principal stress

direction x2 (the wavelength l
ðdÞ
2 associated with the dominant

mode is infinite). This orientation has also been found by
Dudzinski and Molinari (1988) for long wavelength perturba-
tions. The growth-rate associated with the dominant mode is all
the smaller (and the wavelength l

ðdÞ
1 all the greater) that a is

greater. Hill's bifurcation analysis concludes that ductility is
infinite during biaxial stretching tests, because it applies only to
instantaneous processes.

Plane strain tension (a¼ 0; the dimension of the plate along the
x2� loading direction is infinite) is a particular case of the 3D�
model we present here. Numerous publications have been devoted
to that case. Let us consider the ones written as we do in the
framework of the so-called “J2� Flow Theory” (Von Mises plasticity
criterion and the associated normality flow rule are supposed to be
satisfied). In 1977, Hutchinson et al. (1978) carried out a rigorous 2D
Linear Stability Analysis to study the onset of necking plastic in-
stabilities during static plane tension tests on rigid viscoplastic
materials obeying Norton's law (Norton,1929). Viscosity damps the
development of short wavelength instabilities (in comparison with
thickness); therefore the dominant mode lies in the field of long
wavelengths. In 1994, keeping the same constitutive law,
Fressengeas and Molinari (1994) showed that inertia stabilizes the
longest wavelengths. Thus, the wavelength associated with the
dominant mode is an intermediate one. In 2010, Mercier et al.
(2010) generalized this model to any analytic constitutive law
Yð 3p; _3p; TKÞ, and they retrieved the order of magnitude of the
number of necks (and the time at which they appear) during the
expansion of hemispherical metallic shells driven by explosive
charge. Carrying out numerical simulations, they determined the
plane strain loaded zone at different instants of time (this zone is
the most unstable zone, as we shall see further), to which they
applied their Linear Stability Analysis.

Applied to plane strain tension (a ¼ 0), the 3D� model we
present here retrieves important published results (Jouve, 2014), in
particular by Fressengeas and Molinari (1992, 1994), and also by
Hill and Hutchinson (1975) and Young (1976). As other authors
carrying out simpler approaches (see (Hart, 1967) for example), we
retrieve the criterion of Consid�ere (1885) in the absence of viscous
effects; the first instabilities, that are long wavelength ones for
ductile metals, appear when the applied force is maximum (see
Jouve (2013), Subsection 3.5). Some important similarity laws have
been established for non viscous materials. In particular, for a
constitutive law in the form Y( 3p), a given deformation level 3p and a
given product g1L3 (with g1 ¼ 2p/l1), the growth-rate q is inversely
proportional to the square root of mass density r: qf1=

ffiffiffi
r

p
(see

Jouve (2013), Subsection 3.4). In this article, we shall see that this
similarity law is valid for non positive a, in the absence of viscous
effects.

1.1. Outline

After briefly recalling the evolution equations of the mean ho-
mogeneous ground flow (Section 2), and the equations of the linear
stability analysis (section 3 e see (Jouve, 2010) for details), we
search for the dominant mode in Section 4, for different values of a
and different constitutive laws. We assess the field of values of a
such as inertia and elasticity play a negligible role, with dominant
mode having long wavelength compared to thickness. In these
cases, the model of Dudzinski and Molinari suffices to predict very
accurately the development of necking. The growth-rate of these
long wavelength instabilities is a root of a simple polynomial
equation, that we retrieve in section 5 starting from the equations
of our 3D linear stability analysis.

Fig. 1. Plate biaxially loaded in tension in its plane. We take x1 as major principal
(Cauchy) stress direction, and x2 as minor principal stress direction: 0 � jS22j � S11.
The velocity gradient ratio a ¼ D22/D11 (D11 > 0) (D denoting strain-rate tensor) is
between �1 (simple shear loading in the (x1, x2) plane) and 1 (balanced stretching). It
equals �1/2 in uniaxial tension along x1-direction, and 0 in plane tension in the (x1, x3)
plane.

Fig. 2. Periodically spaced thinnings, due to a perturbation d v! of the velocity field,
symmetrical with respect to the median plane, written as: d v!¼ eqtei2pn=l F

!ðx3Þ (F1
and F2 are even functions of x3, F3 is an odd function of x3).
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