
Nonlinear free vibration analysis of variable stiffness symmetric skew
laminates

A. Houmat
Department of Mechanical Engineering, University of Tlemcen, B.P. 230, Tlemcen 13000, Algeria

a r t i c l e i n f o

Article history:
Received 27 October 2013
Accepted 24 October 2014
Available online 4 November 2014

Keywords:
Skew laminate
Variable stiffness
Nonlinear free vibration

a b s t r a c t

A skew p-element is developed for the nonlinear free vibration of variable stiffness symmetric skew
laminates. The governing equations are based on thin plate theory and Von Karman strains. The
fundamental frequencies and normal modes are computed for fully clamped edge conditions. The
equations of motion are derived using Lagrange's method. By employing the harmonic balance method,
the transformation from time to frequency domain is facilitated. The nonlinear equations are solved
using the iterative technique known as the linearized updated mode method. The numerical results are
validated with the help of convergence tests and comparisons with published data. New results are
presented for variable stiffness symmetric skew laminates with different fiber configurations showing
the effects of variation in skew angle on frequency, normal mode, and degree of hardening.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Skew laminates are commonly used in modern structural ap-
plications because of their high strength-to-weight ratio and
excellent resistance to fatigue. To guarantee a suitable design, the
vibration characteristics of those structures must be known.
Generally, it is difficult to obtain exact solutions for the free vi-
bration of skew laminates. Hence, one must make use of numerical
methods to obtain approximate solutions. The numerical methods
which have been proposed for the solution of the linear free vi-
bration of constant stiffness skew laminates are the finite element
method (Krishnan and Deshpanda, 1992; Krishna Reddy and
Palaninathan, 1999), Ritz method (Kapania and Singhvi, 1992;
Anlas and Goker, 2001; Han and Dickinson, 1997), Green's func-
tion method (Hosokawa et al., 1996), B-spline Ritz method (Wang,
1997a,b), and finite strip transition matrix method (Ashour, 2009).
Nonlinearity arises when the laminate vibrates at large amplitudes.
The nonlinear free vibration of constant stiffness skew laminates
has been solved numerically using the finite element method
(Singha and Ganapathi, 2004; Singha and Daripa, 2007) and dif-
ferential quadrature method (Malekzadeh, 2007, 2008). The
nonlinear free vibration of variable stiffness rectangular laminates
has been solved numerically using a rectangular p-element based

on nonlinear first-order shear deformation plate theory (Ribeiro
and Akhavan, 2012).

The literature review unveils that there are no solutions to the
nonlinear free vibration of variable stiffness skew laminates. This
paper aims to fill this gap by obtaining new results for the funda-
mental frequencies and normal modes of variable stiffness sym-
metric skew laminates using a skew p-element based on thin plate
theory and von Karman strains. Recently, the author (Houmat,
2013) obtained new results for the fundamental frequencies and
normal modes of variable stiffness rectangular laminates using a
rectangular p-element based on thin plate theory and von Karman
strains. The design space depended only on the length. This work is
an extension of the author's previous study to variable stiffness
skew laminates. Herein, the design space depends on the oblique
width and skew angle. The principal goal of this study is to validate
the numerical results with the aid of convergence tests and com-
parisons with published data. In addition, a parametric analysis is
used to study the normal modes and degree of hardening by
changing the skew angle.

2. Characteristics of variable stiffness skew laminate

The slope of the basic fiber curve is assumed to vary linearly
with x' from T0 at the middle to T1 at a distance bcosf/2 from the
origin inwhich f denotes the skew angle and b denotes the oblique
width. The linear variation of slope has the advantage that it yields
closed-form expressions for the curve equation and curvature. AE-mail address: ahoumat@hotmail.com.

Contents lists available at ScienceDirect

European Journal of Mechanics A/Solids

journal homepage: www.elsevier .com/locate/ejmsol

http://dx.doi.org/10.1016/j.euromechsol.2014.10.008
0997-7538/© 2014 Elsevier Masson SAS. All rights reserved.

European Journal of Mechanics A/Solids 50 (2015) 70e75

Delta:1_given name
mailto:ahoumat@hotmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.euromechsol.2014.10.008&domain=pdf
www.sciencedirect.com/science/journal/09977538
http://www.elsevier.com/locate/ejmsol
http://dx.doi.org/10.1016/j.euromechsol.2014.10.008
http://dx.doi.org/10.1016/j.euromechsol.2014.10.008
http://dx.doi.org/10.1016/j.euromechsol.2014.10.008


basic fiber is symbolized by 〈T0jT1〉. Fig. 1 shows the basic fiber
curve. The ordinate y' and slope q of the fiber curve are expressed as
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in which x '¼ y.
The rest of fibers are conceived by relocating the basic fiber fixed

distances in the direction parallel to the y’-axis. Fig. 2 shows a two-
layer skew laminate (f ¼ 15

�
). The skew laminate is symbolized by

½H〈30oj60o〉�. To prevent fiber kinking, the maximum curvature
must not surpass 3.28 m�1 (Waldhar, 1996).

The curvature k is given by
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3. Formulation

The relationships between dimensionless and Cartesian co-
ordinates are

x ¼ 2
a
ðx� ytanfÞ (4)

h ¼ 2y
bcosf

(5)

The displacements u, v, and w are written as
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in which p denotes the polynomial order, t denotes time, and
J ¼ l þ (k � 1)( pþ 1).

Expressions for the shape functions ga (a ¼ 3, 4 … 11) and fb
(b ¼ 5, 6 … 11) can be found in Houmat (2012).

The relationships between strains and displacements are
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The relationships between curvatures and transverse displace-
ment are

Fig. 1. Basic fiber curve and slope. Fig. 2. ½H〈30oj60o〉�skew laminate with f ¼ 15
�
.
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