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a b s t r a c t

Magneto-active polymers are a class of smart materials commonly manufactured by mixing micron-sized
iron particles in a rubber-like matrix. When cured in the presence of an externally applied magnetic field,
the iron particles arrange themselves into chain-like structures that lend an overall anisotropy to the
material. It has been observed through electron micrographs and X-ray tomographs that these chains are
not always perfect in structure, and may have dispersion due to the conditions present during
manufacturing or some undesirable material properties. We model the response of these materials to
coupled magneto-mechanical loading in this paper using a probability based structure tensor that ac-
counts for this imperfect anisotropy. The response of the matrix material is decoupled from the chain
phase, though still being connected through kinematic constraints. The latter is based on the definition of
a ‘chain deformation gradient’ and a ‘chain magnetic field’. We conclude with numerical examples that
demonstrate the effect of chain dispersion on the response of the material to magnetoelastic loading.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Magneto-active polymers (MAPs) are smart materials in which
the mechanical and the magnetic properties are coupled with each
other. Typically these elastomers are composed of a rubber matrix
filled with magnetisable iron particles. The magnetisable particles
are usually between 1 and 5 mm in diameter and kept between
0 and 30% by volume of the entire mixture (Boczkowska and
Awietjan, 2009; Ginder et al., 2002; Jolly et al., 1996; Co Ting Keh
et al., 2013). The application of an external magnetic field causes
the magnetisation of iron particles and the resulting parti-
cleeparticle and particleematrix interactions lead to phenomena
such as magnetostriction and a change in the overall material
stiffness (Danas et al., 2012; Varga et al., 2006). These elastomers
have received considerable attention in recent times due to their
potential uses in a variety of engineering applications, such as
variable stiffness actuators (B€ose et al., 2012) and vibration sup-
pression by energy absorption (Co Ting Keh et al., 2013; Yalcintas
and Dai, 2004).

Mathematical modelling of the coupling of electromagnetic
fields in deformable continua has been an area of active research in

the past. In particular, we note the contributions of Landau and
Lifshitz (1960), Livens (1962), Tiersten (1964), Brown, (1966), Pao
and Hutter (1975), Maugin and Eringen (1977), Maugin (1988),
and Eringen and Maugin (1990). The advancement of MAP (along
with electro-active polymer) fabrication in the laboratory setting,
and hence their wider availability in recent decades, has led to
another surge in research in this area. Furthermore, as opposed to
metallic alloys and ceramics, newly developed polymer based
materials can undergo very large deformations. This has resulted in
focused explorations in the nonlinear regime of their response.

Recent developments in this field, based on the classical works
mentioned above, are largely due to Brigadnov and Dorfmann
(2003), Dorfmann and Ogden (2004, 2014), and Kankanala and
Triantafyllidis (2004). The former's (Dorfmann and coworkers)
work is based on the definition of a ‘total’ energy density function
that implicitly accounts for magnetic and coupled energy stored in
the polymer; while the latter's approach is to minimise a general-
ised potential energy with respect to internal variables, thereby
yielding the relevant governing equations and boundary condi-
tions. It is shown that any one of the magnetic induction, magnetic
field, or magnetisation vectors can be used as an independent input
variable and the other two obtained through constitutive relations.
Based on these formulations, several nonlinear deformation prob-
lems have been studied by, for example, Dorfmann and Ogden
(2005), Ott�enio et al. (2008), Bustamante et al. (2011a), and Danas
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et al. (2012). Steigmann (2009) and Maugin (2009) have discussed
several important issues concerning the modelling of coupled
magneto-electro-elasticity using continuum approaches. Further
newer developments pertain to using implicit theories
(Bustamante and Rajagopal, 2013) and rate-dependent theories
(Saxena et al., 2013, 2014) for modelling more general effects, but
are beyond the scope of this work.

MAPs can exhibit isotropic or anisotropic properties depending
on the kind of fabrication process used. If the elastomers are cured
in the presence of an external magnetic field, the magnetisable
particles tend to form chain-like arrangements lending an overall
directional anisotropy to the material. Experiments on such mate-
rials (Varga et al., 2006) have shown that anisotropic MAPs tend to
have stronger coupling with the external magnetic field and are
therefore more likely to be used in engineering applications.

The modelling of soft elastomers with a directional anisotropy is
a subject of research in its own right. For example, averaging ap-
proaches have been adopted by Galipeau and Ponte Cast~aneda
(2012) and Yin et al. (2006) to capture the microscopic behaviour
of alignedmagnetisable particles in soft carrier. In contrast, Rudykh
and Bertoldi (2013) directly represented the chain-type micro-
structure using a laminate structure. Another common method of
incorporating anisotropy, and that adopted within this work, is by
using structural tensors. As described by Spencer (1971) and Zheng
(1994), these can be coupled with the right CauchyeGreen defor-
mation tensor to obtain scalar invariants through symmetry argu-
ments. The invariants are then used as an independent input in the
energy density function defining the material properties. This
method has been used by, among others, Shams et al. (2011) for
modelling pre-stressed elastic solids, Holzapfel and Gasser (2001)
for modelling fibre-reinforced composites, and Bustamante (2010)
and Danas et al. (2012) for modelling MAPs with a directional
anisotropy. One needs to choose at least a minimum number of
invariants for completeness (Destrade et al., 2013) and take care
while performing energy decomposition for numerical imple-
mentation of incompressible materials (Sansour, 2008). Another
approach towards this problem is by decoupling the response of the
matrix and the anisotropic part, thereby considering different ki-
nematic variables and energies for each. This has been used by
Klinkel et al. (2004) in the case of anisotropic elasto-plasticity and
by Nedjar (2007) for modelling anisotropic visco-elasticity. Based
on this latter approach, Saxena et al. (2014) recently presented a
model for nonlinear magneto-viscoelasticity of anisotropic MAPs.

Recent experiments have shown another rather important
feature in the microstructure of anisotropic iron-filled MAPs,
namely that the particle chains formed due to the curing of an MAP
under an external magnetic field are not all aligned in the same
direction. The chains combined together have an average alignment
in the direction of the magnetic field applied during curing, but
individual chains do have an observable dispersion that may
possibly influence the macroscopic response of the material.
Modelling of this phenomenon and demonstration of the effect of
chain dispersion on the overall macroscopic response of anMAP are
the main contributions of this paper. We note that, mathematically,
this phenomenon is similar to the dispersion of fibres in biological
tissues as is discussed in the papers by Gasser et al. (2006),
Holzapfel and Ogden (2010) on the modelling of blood vessels,
and Federico and Herzog (2008) on articular cartilage. In these
works, the authors considered a generalised structure tensor based
on a probability density function that accounts for the dispersion of
embedded fibres.

Numerical methods, and in particular finite element analysis,
have been widely used in the study of magneto-sensitive materials
in order to understand and predict both their micro- and macro-
scopic behaviour. The formation of particle chains in magneto-

rheological fluids, effectively characterising the pre-cured state of
an MAP, has been investigated by Ly et al. (1999) and Simon et al.
(2001). For the case of solid carriers, Boczkowska et al. (2010),
Chen et al. (2013) and Vogel et al. (2014) have studied the move-
ment of magnetic particles in elastomers. A coupled scalar mag-
netic potential formulation has been utilised to predict both the
magnetic and deformation fields at the macroscopic level, where
consideration of the surrounding free space is necessary. For
example, Kannan and Dasgupta (1997) adopted this approach to
study themagnetostrictive behaviour of MAPs and their application
in mini-actuators, Zheng and Wang (2001) investigated the mag-
netisation of a ferromagnetic plate and Bermúdez et al. (2008)
demonstrated its application to electromagnets. Furthermore, the
shear behaviour of a magnetised block in free space has been
considered by Marvalova (2008) and Bustamante et al. (2011a), the
latter of whom also investigated its contractile behaviour.

The remainder of this paper is arranged in the following
manner: In Section 2 we outline the fundamental aspects of con-
tinuum mechanics pertaining to magnetoelasticity. Following this,
in Section 3 we provide a motivation and the mathematical
formulation of the dispersed magnetisable particle chains that
comprise the MAP microstructure. We then detail a decoupled
energy model for quasi-incompressible media in Section 4, and the
associated energy model for the free space. In Section 5, we briefly
present the finite element formulation used for performing the
numerical computations. Analytical and finite element examples,
used to demonstrate the behaviour captured by the constitutive
model, are presented in Sections 6 and 7 respectively. Lastly, some
concluding remarks are presented in Section 8.

2. Kinematics, balance laws and boundary conditions

We consider a body composed of a quasi-incompressible mag-
netoelastic material which, in a state of no stress and no defor-
mation, occupies the reference configuration B 0 with a boundary
vB 0. In this state, the free space surrounding the body is denoted
by S 0 and the entire domain by D 0 ¼ B 0∪S 0. On a combined
mechanical and magnetic static loading, the body occupies the
spatial configuration B t at time t with the boundary vB t. The
corresponding configurations for the free space and entire domain
are denoted by vB t and D t ¼ B t∪S t , respectively. A deformation
function 4 maps the points X2D 0 to the points x2D t by the
relation x ¼ 4(X). The deformation gradient tensor is given by a
two-point tensor F ¼ V04, V0 being the differential operator with
respect to X. The determinant of F is given by J¼ det F such that the
condition J > 0 is always satisfied. For the case of an incompressible
material, as presented in Section 6, the constraint J ≡ 1 is enforced.

It is assumed that the material is electrically non-conducting
and that there are no electric fields. Let s be the symmetric total
Cauchy stress tensor (Dorfmann and Ogden, 2004) that takes into
account magnetic body forces, r be the mass density, fm be the
mechanical body force per unit deformed volume, a be the accel-
eration, b be the magnetic induction vector in D t , and h be the
magnetic field vector in D t . The balance laws are expressed as
(Brown, 1966; Maugin and Eringen, 1977)

V$sþ fm ¼ ra; st ¼ s inB t ; V� h ¼ 0; V$b ¼ 0 inD t :

(1)

Here V denotes the differential operator with respect to x in D t .
Equation (1)1 is the statement of balance of linear momentum,
equation (1)2 is the statement of balance of angular momentum,
equation (1)3 is a specialisation of the Amp�ere’s law, and equation
(1)4 is the statement of impossibility of the existence of magnetic
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