
A nth-order shear deformation theory for the bending analysis on the functionally
graded plates

Song Xiang*, Gui-wen Kang
Liaoning Key Laboratory of General Aviation, Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenyang, Liaoning 110136, People’s Republic of China

a r t i c l e i n f o

Article history:
Received 2 May 2012
Accepted 23 August 2012
Available online 31 August 2012

Keywords:
nth-Order shear deformation theory
Bending analysis
Functionally graded plates
Meshless
Thin plate spline

a b s t r a c t

This paper focus on the bending analysis of functionally graded plates by a nth-order shear deformation
theory and meshless global collocation method based on the thin plate spline radial basis function.
Reddy’s third-order theory can be considered as a special case of present nth-order theory (n ¼ 3). The
governing equations are derived by the principle of virtual work. The displacement and stress of a simply
supported functionally graded plate under sinusoidal load are calculated to verify the accuracy and
efficiency of the present theory.

� 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

In recent years, functionally graded materials had been utilized
in the aerospace and other industries because of their superior
heat-shielding properties. The functionally graded material for
high-temperature applications may be composed of ceramic and
metal. The material properties of functionally graded material vary
continuously along certain dimension of the structure, but that of
the fiber-reinforced laminated composite materials are discontin-
uous across adjoining layers which result in the delaminatingmode
of failure.

Many researchers have studied the behaviors of functionally
graded plates. Vel and Batra (2004) presented the three-
dimensional exact solution for the vibration of functionally
graded rectangular plates. Ferreira et al. (2005) studied the static
characteristics of functionally graded plates using third-order
shear deformation theory and a meshless method based on the
multiquadrics radial basis function. Ferreira et al. (2006) calcu-
lated the natural frequencies of functionally graded plates by the
multiquadrics radial basis function. Zenkour (2006) proposed
a generalized shear deformation theory for bending analysis of
functionally graded plates. Ferreira et al. (2007) studied the static

deformations of functionally graded plates using the radial basis
function collocation method and a higher-order shear deforma-
tion theory. They select the shape parameter in the radial basis
functions by an optimization procedure based on the cross-
validation technique. Carrera et al. (2008) presented the static
analysis of functionally graded material plates subjected to
transverse mechanical loadings. The unified formulation and
principle of virtual displacements were employed to obtain both
closed-form and finite element solutions. Matsunaga (2008)
calculated the natural frequencies and buckling stresses of
plates made of functionally graded materials (FGMs) using a 2-D
higher-order deformation theory. Carrera et al. (2011) evaluated
the effect of thickness stretching in plate/shell structures made
by materials which are functionally graded (FGM) in the thick-
ness directions. Xiang et al. (2011) proposed an n-order shear
deformation theory for free vibration of functionally graded and
composite sandwich plates.

In recent years, the various higher-order shear deformation
theories were proposed to analyze the plates. Touratier (1991)
presented a standard plate theory which accounts for cosine
shear stress distribution and free boundary conditions for shear
stress upon the top and bottom surfaces of the plate. Soldatos
(1992) presented a general two-dimensional theory suitable for
the static and/or dynamic analysis of a transverse shear
deformable plate, constructed of a homogeneous, monoclinic,
linearly elastic material and subjected to any type of shear
tractions at its lateral plane. Karama et al. (2003) presented
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a new multi-layer laminated composite structure model to
predict the mechanical behaviour of multi-layered laminated
composite structures. They introduced an exponential function
as the shear stress function. Reddy (1984) developed a higher-
order shear deformation theory which accounts for parabolic
distribution of the transverse shear strains through the thickness
of the laminated plate. Aydogdu (2009) proposed a new higher-
order laminated composite plate theory in which a new shear
stress function was used.

In this paper, an n-order shear deformation theory is used to
analyze the static characteristics of functionally graded plates. The
present n-order shear deformation theory satisfies the zero trans-
verse shear stress boundary conditions on the top and bottom
surface of the plate. The third-order theory of Reddy can be
considered as a special case of present n-order theory (n ¼ 3).
Displacement and stress of the simply supported functionally
graded plate under sinusoidal load are computed by present n-
order theory and a meshless global collocation method based on
the thin plate spline radial basis function. The results are compared
with the available published results.

2. The governing equations based on the nth-order shear
deformation theory

The displacement field of the n-order shear deformation
theory is
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where u, v,w, fx and fy are the unknown displacement functions. h
is the thickness of the plate.

The strain can be expressed in the form of
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We obtain the following EulereLagrange equations using the
dynamic version of the principle of virtual displacements
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The stressestrain relationships of the functionally graded plate
in the global xeyez coordinate system can be written as
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where

Q11ðzÞ ¼ EðzÞ
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In the Eq. (6), m is the Poisson’s ratio, the variation of Young’s
modulus E is given as:

EðzÞ ¼ ðEc � EmÞ
�
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where Ec and Em denote the elasticity modulus of the ceramic and
metal, respectively. p is power law index. z is the distance from
mid-plane. h is the thickness of the plate. As can be seen Eq. (7),
E(z) ¼ Ec at the top surface z/h ¼ 0.5, and E(z) ¼ Em at the bottom
surface z/h ¼ �0.5. Top surface of functionally graded plate is pure
ceramic, and bottom surface is pure metal.

Substituting Eq. (2) and Eq. (5) into Eq. (4), the resultants
of functionally graded plate can be expressed in terms of
displacement as follows
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