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a b s t r a c t

This paper introduces means for fatigue damage rates estimation using Laplace distributed multiaxial
loads. The model is suitable for description of stresses containing transients of random amplitudes and
locations. Explicit formulas for computing the expected value of rainflow damage index as a function
of excess kurtosis are given for correlated loads. A Laplace model is used to describe variability of forces
and bending moments measured at some location on a cultivator frame. An example of actual cultivator
data is used to illustrate the model and demonstrate the accuracy of damage index prediction.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic modeling of loads is usually done with stationary
Gaussian processes. Well-developed numerical tools for computing
the probabilities of interests are available, see e.g. [1]. However,
many of the environmental loads that act on for example ground
vehicles are far from being Gaussian. Nevertheless, Gaussian mod-
els are often used, and this sometimes leads to serious underesti-
mation of risks for fatigue.

Estimations of component durability often requires a customer
or market specific load description. One is interested in having
models that are capable of describing the correct variability of
loads with a relatively small number of parameters. These models
can then be used to describe the long term loading by means of a
distribution of the parameter values, specific for a given market
or encountered by specific customers.

The severity of environmental loads can be measured by means
of damage indexes. In the case when Gaussian models are used for
stresses, there are many methods for estimating the expected
damage indexes from the power spectrum density, psd, see eg.
[2] for a review of different approaches. Much less is known for
loads containing transients. In this paper, explicit formulas for
computing expected value of rainflow damage index as a function

of excess kurtosis will be given, for a special case of equally dis-
tributed although correlated Laplace loads.

A Gaussian model can be seen as the result of smoothing Gaus-
sian white noise, i.e. a sequence of independent standard Gaussian
variables, by a suitable kernel. When a cultivator is operating in
light sandy soils where stones are frequent, the vibrations have a
larger spread of variation that cannot be modeled by solely
Gaussian processes. The Laplace white noise is used to model the
larger spread by letting Gaussian white noise have variable
variance. This is achieved by multiplying the Gaussian variables
by the square root of gamma distributed factors. The factors have
mean value one, and hence, loads derived by smoothing Gaussian
or Laplace noise with the same kernel will have identical power
spectrum densities (psd). However, in contrast to the Gaussian
process, the Laplace process will have visible transients at times
when factors take large values.

In this paper, we present models for loads, which are forces and
bending moments, measured at some point of a stiff mechanical
structure. For example, the method is used to asses the durability
of welds in a stiff frame of a cultivator. Hence accurate description
of stress variability at welds are needed. For a stiff frame, stresses
are linear combinations of environmental loads. This property
makes modeling using Gaussian processes very convenient, since
linear combinations of Gaussian loads are Gaussian processes as
well and any probability of interest can in principle be computed
when the psd of the loads are available.

In Fig. 1, six loads, three forces and three moments measured on
one tine, are presented. One can see that transients appearing in
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different forces and bending moments are often close in time. Since
stress is a linear combination of the loads this may result in very
large stresses whichmay greatly amplify the damage accumulation
rate. The proposed multiaxial Laplace model for load will have the
property of high frequency of simultaneous occurrences of large
transients. Table 1 shows statistics for the dominating signals
including the observed damage as defined in the next section.

2. Fatigue damage

In this paper, multivariate random processes XðtÞ ¼ ðX1ðtÞ; . . . ;
XMðtÞÞ are used to represent multi-axial loads, being forces and
bending moments acting on a structure at different locations.
For a stiff structure, stresses, used to predict fatigue damage, are
linear combinations of forces and moments. For this reason, it is
important to model the multi-axial load so that a stress, i.e. a linear
combination of loads

YcðtÞ ¼
XM
r¼1

crXrðtÞ; t 2 ½0; T�; ð1Þ

yields accurate fatigue accumulation. In the examples in this paper
we focus on the situation where the sum above is over forces and
moments measured at one position. If there are forces and moments
in several positions, the sum should be over all of them. Since the
vector c ¼ ðc1; . . . ; cMÞ may vary between locations in a structure
experiencing the same loads XðtÞ one requires good accuracy for
any choice of constants c. These are typically evaluated using finite
elements method and depend on geometry and material properties
and transfer external loads to stresses at a point in the structure of
interest. The fatigue damage accumulated in the material is
expressed using a fatigue (damage) index defined by means of the
rainflow method which is computed in the following two steps.

First, rainflow ranges hrf
k ðcÞ; k ¼ 1; . . . ;K , in YcðtÞ are found. Here

K is the number of rainflow cycles which equals the number of local
maxima. Then the rainflow damage is computed according to
Palmgren–Miner rule [3,4], viz.

DðcÞ ¼ 1
T

XK

k¼1

ðhrf
k ðcÞÞ

b
; ð2Þ

see also [5] for details of this approach. Various choices of the dam-
age exponent b can be considered. The value is an empirical con-
stant estimated by means of regression from experiments
involving constant amplitude loads. In this paper b ¼ 3, which is
the standard value for the crack growth process in a welded frame.

The index DðcÞ is often called multi-axial damage index and was
introduced in [6].

The proposed model for the multi-axial loads XðtÞ is validated
by using measured loads and comparing the ensuing damage index
with the expected value of the damage index following from the
model fitted to the data. In this, first the model parameters are esti-

mated using measured loads XobsðtÞ. Then the expected theoretical
damage index DðcÞ ¼ E½DðcÞ� is estimated by means of Monte Carlo

(MC) method and compared with DobsðcÞ for a suitably chosen

vector of factors c, where DobsðcÞ is computed by means of (2) with
rainflow ranges obtained in the observed records. In our notation,
we do not explicitly indicate that the expected damage index DðcÞ
depends also on the properties and defining parameters of the
process X. In what follows, whenever this dependence needs to
be exhibited, we write DXðcÞ and DXðcÞ for the damage and the
expected damage, respectively.

3. Uniaxial load

Power spectral density (psd) is an important characteristics of
stationary stress (load). For Gaussian stress the fatigue damage
index is a function of psd alone. Even for Laplace processes, psd
remains an important characteristic. However, it in general does
not determine the damage index completely. In this paper, a very
simple, yet often used, reparametrization of the model for psd is
used

SaðxÞ ¼ r2 aSðaxÞ a > 0; ð3Þ

where
R
SðxÞdx ¼ 1, r2 is the variance of the load, while a is a

spectrum scale parameter. A load with psd given in (3) can be
written as

XaðtÞ ¼ rXðt=aÞ; ð4Þ

where XðtÞ ¼ X1ðtÞ=r, having psd SðxÞ, is a scale normalized load.
The psd (3) and process (4), where XðtÞ is Laplace moving average,
have found applications, for example, in road roughness classifica-
tions, where a is the velocity a vehicle travels while SðxÞ depends
on the linear filter that has been used to model responses and the
spectral properties of a road profile, see [7].

The proposed model is applicable to an arbitrary form of
spectrum SðxÞ. For modeling cultivator loads, the following psd
proves to be useful

SðxÞ ¼ 0:5expð�jxjÞ; ð5Þ

Nomenclature

a spectrum scale parameter (dimensionless)
b damage exponent (dimensionless)
c ¼ ðc1; . . . ; cMÞ constants combining loads into stress:

106 � ½m�3� (bending moments), 106 � ½m�2� (forces)
DðcÞ ¼ DXðcÞ rainflow multiaxial damage index (mb/s)
DobsðcÞ observed multiaxial damage index (mb/s)
DðcÞ ¼ DXðcÞ expected damage index (mb/s)
Fx; Fy; Fz forces in the principal directions (N)
F ;F�1, Fourier transform and its inverse
gðtÞ kernel for scale standardized moving averages
Cð�Þ gamma function
hrfk ðcÞ; k ¼ 1; . . . ;K the rainflow cycle ranges (m)
j; je kurtosis and excess kurtosis of a load (dimensionless)
Mx; My; Mz bending moments in the principal directions (Nm)
m shape parameter in gamma distribution
x angular frequency (rad)

R ¼ ½Ri� gamma white noise
q correlation in bivariate noise ½W1;W2�
r2 variance of the load (N2 m2) or (N2)
R covariance matrix of the bivariate load (N2 m2) or (N2)
SaðxÞ spectrum of bending moment load (N2 m2/rad)
SðxÞ normalized spectrum of a load (rad�1)
t; T running time, total time, respectively (s)
XðtÞ ¼ ðX1ðtÞ; . . . ;XMðtÞÞ vector of loads: bending moments (Nm),

forces (N)
XobsðtÞ observed loads: bending moments (Nm), forces (N)
XðtÞ scale normalized dimensionless load
YcðtÞ stress (MPa)
W ¼ ½Wi� white noise (independent equally distributed random

variables)
½W1;W2� white noise in the bivariate case
Z ¼ ½Zi� Gaussian white noise
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