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a b s t r a c t

This article studies the significant amount of literature that has been published recently on the dynamic
response of plating subjected to large dynamic loadings. A theoretical method of analysis for mass im-
pacts, dynamic pressure pulses and impulsive velocity or blast loadings on circular, square and rectan-
gular plates is presented for the idealisation of a rigid, perfectly plastic material. This theoretical analysis
caters for the influence of finite-displacements and is developed further to predict the response for plates
made from a strain rate sensitive material. Relatively simple equations are presented for the maximum
permanent transverse displacements which give good agreement with the corresponding experimental
data, and therefore, can be used for design purposes, safety calculations, security studies, hazard as-
sessments and forensic investigations.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

There has been significant recent interest in the response of
ductile metal plating to both impact [1e4] and explosive pressure
[5e15] loadings which produce large inelastic deformations,
damage and failure. The major thrust of this work has been the
generation of experimental results, development of design
formulae and the validation of numerical methods of analysis. This
collection of new experimental data provides an opportunity to
examine the accuracy of a theoretical procedure which was pub-
lished in Ref. [16] and developed for the dynamic plastic response
of arbitrarily shaped plates, as discussed in Ref. [17]. In fact, most of
the experimental data can be studied with this theoretical proce-
dure. The plate materials are idealised as a rigid, perfectly plastic
material and the influence of large displacements (i.e., membrane
forces and geometry changes) were retained in the analysis. A
theoretical solution was presented for simply supported and fully
clamped rectangular plates subjected to a rectangular shaped
pressureetime history, which in the limit of an infinitesimally short
pressure duration, reduces to an impulsive velocity loading. Good
agreement was obtained with the experimental results reported on
explosively loaded fully clamped ductile metal rectangular plates. A
design formula based on a simplified yield condition provided
bounds on the experimental data.

Subsequently, this theoretical procedure has been used to pre-
dict the permanent transverse displacements and other features of
the response for fully clamped circular plates struck by a solid mass
[18]. Ref. [19] studied both circular and square plates struck by solid
masses and with a boundary resisting moment mM0, with
0 < m < 1. The extreme cases of m ¼ 0 and m ¼ 1 represent simple
supports and fully clamped supports, respectively. More recently,
the theoretical solution was used to examine rectangular plates
with a resisting moment mM0 around the supports and struck by a
large (relative to the plate mass) solid mass at the mid-span having
a small footprint [4].

It is evident that theoretical solutions and design formulae are
now available for a wide range of circular, square and rectangular
plates subjected to impact, pressure pulses or blast loadings. The
recently published experimental data, together with the previously
available data, allow the predictions of the theoretical method in
Ref. [16] to be assessed for accuracy and reliability for design pur-
poses. The integration of the available information should be of
value to design engineers and others who are interested in esti-
mating the damage of structural members due to large dynamic
loadings and to those seeking to validate numerical calculation
methods [20].

Thus, the theoretical procedure is described briefly in Section
2 and illustrated in Section 3 for a fully clamped circular plate
struck by a solid mass. The formulae for the maximum perma-
nent transverse displacements of circular, square and rectan-
gular plates subjected to low-velocity impacts by a solid mass,* Tel.: þ44 01516256391.
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dynamic pressure pulses and impulsive velocity loadings are
presented in the Appendix A. A method for incorporating the
influence of material strain rate sensitivity of the plate materials
into the theoretical procedure is developed in Section 4.
A comparison between the theoretical predictions and the
experimental results is made in Section 5. Section 6 contains
some further comments, while Sections 7 and 8 contain the
discussion and conclusions.

2. Theoretical method of analysis

Now a considerable body of work has been published on the
plastic collapse behaviour of ductile structures when subjected to a
wide range of static and dynamic loadings which produce an in-
elastic material response. However, the theoretical formulations, in
most cases, are based on governing equations using the first order
or classical theory, which was developed for structures undergoing
infinitesimal displacements. In the case of beams and plates, for
example, the response can change significantly under transverse
loadings due to geometry changes brought about by sufficiently
large loadings causing finite-displacements. A smaller literature has
examined the large transverse deflection response of structures
which caters for this phenomenon, but this paper presents some
results for the dynamic behaviour of plates obtained using the
method reported in Ref. [16].

The analysis developed in Refs. [16,17] uses the general equation
of motion for an arbitrarily shaped plate (includes a beam as a
special case) which is integrated with the aid of Green’s theorem
and leads to a set of equations expressing energy conservation. In
other words, the external work rate (impact, dynamic pressure and
inertia forces) is equated to the internal energy dissipated at plastic
hinges and within plastic zones. The plates have a uniform thick-
ness, H, and are made from a rigid, perfectly plastic material and
transverse, in-plane and rotational inertia, as well as transverse
shear effects, are retained in the basic equations. The equations
which emerge from this general method can be simplified for
particular problems, such as axisymmetry studied in Ref. [18], or by
neglecting transverse shear effects (e.g. Ref. [4]). In other cases, the

response of a particular problem might involve plastic dissipation
at only straight line kinematically admissible hinges with the
remainder of a plate remaining rigid, as in Ref. [4] for rectangular
and square plates.

The theoretical analysis in Refs. [16,17] can be written in the
following form when neglecting in-plane and rotational inertia
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Z
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where G is an impact mass, and m is the mass per unit surface area
of a plate. The transverse displacement of a plate is w, while _w and
€w are the associated velocity and acceleration. W is the transverse
displacement of the plate which is immediately underneath a
striking mass.

The terms on the left hand side of equation (1) are the work
rate due to the pressure pulse, p, and the inertia forces of the
mass G and plate mass, where A is the surface area of a plate. The
first term on the right hand side of equation (1) is the energy
dissipated in any continuous deformation fields. The second term
gives the energy dissipated in n plastic hinges, each having an
angular velocity ðv _w=vrÞm across a hinge of length Cm. The final
term is the plastic energy absorption in n transverse shear hinges,
each having a velocity discontinuity ð _wÞu and a length Cu. Equa-
tion (1) ensures that the external work rate equals the internal
energy dissipation.

Notation

a1, a2 defined by equations (27a) and (27b)
b aspect ratio, b ¼ B/L
g mass ratio, ratio of G to the plate mass
3; _3 strain, strain rate
_3e equivalent strain rate
h pressure ratio, equation (A.10)
k; _k change of curvature, rate of change of curvature
l dimensionless initial kinetic energy for a uniform

impulsive velocity loading. Equations (A.19) and (A.22)
m mass per unit area of a plate
x0 defined by equation (A.15c)
r density of material
rm a/R, where a is radius of a cylindrical impact mass
s0; s

0
0 static and dynamic flow stresses

s duration of a rectangular pressure pulse, Fig. 2
U dimensionless initial kinetic energy of an impact mass,

equation (5)
m bendingmoment factor at supports;m¼ 0,1 for simply

supported and fully clamped cases, respectively
p pressure

pc static collapse pressure, equations (A.11), (A.13),
(A.15b) and (A.17b).

po magnitude of dynamic pressure
q CowpereSymonds exponent, equation (15).
r, q , z cylindrical coordinates
t time
u axial displacement
x, y, z Cartesian coordinates
w transverse displacement
2B breadth of a rectangular plate
D CowpereSymonds coefficient, equation (15)
G impact mass
H plate thickness
2L length of a rectangular or square plate
M bending moment per unit length
Mo plastic bending moment per unit length
N membrane force per unit length
R radius of supporting boundary of a circular plate
Qr transverse shear force
Vo initial impulsive velocity
W peak value of w.
Wf permanent value of W.
ð _XÞ vðXÞ=vt
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