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a b s t r a c t

A commonly used approach for the engineering analysis of structures subjected to explosive loads is to
approximate the problem as an equivalent Single-Degree-of-Freedom (SDOF) system and to use elastic
eplastic response spectra. Currently, the response spectra that exist in the literature do not take into
account the fact that blast wave clearing will occur if the target is not part of a reflecting surface that is
effectively infinite in lateral extent. In this article, response spectra for equivalent SDOF systems under
cleared blast loads are obtained by solving the equation of motion using the linear acceleration explicit
dynamics method, with the clearing relief approximated as an acoustic pulse. The charts presented in
this article can be used to predict the peak response of finite targets subject to explosions, and are found
to be in excellent agreement with a finite element model, indicating that the response spectra can be
used with confidence as a first means for predicting the likely damage a target will sustain when sub-
jected to an explosive load. Blast wave clearing generally serves to reduce the peak displacement of the
target, however it is shown that neglecting clearing may be unsafe for certain arrangements of target
size, mass, stiffness and elastic resistance.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The intense loading produced from a high explosive detonation
can cause significant damage to structural elements, potentially
resulting in failure, structural collapse and loss of life. In order to
best protect civilian and military infrastructure from explosions, it
is important to understand and be able to predict the performance
of key components subjected to blast loads.

Numerical analysis methods can be used to model the dynamic
response of structures subjected to explosive loads. Finite element
(FE) simulations, for example, can model the detonation process,
blast wave propagation through air and subsequent interaction
with the target [1e4], as well as complex geometries and material
nonlinearities [5,6]. Whilst these methods often produce results
that are in excellent agreement with experimental observations,
high levels of complexity and long analysis times often render such
simulations unsuitable, especially during the early stages of design.

Alternative analysis methods may be used, particularly when
assessing the approximate level of damage a target will sustain
before more refined analyses are undertaken. The Unified Facilities
Criteria Design Manual (UFC-3-340-02), Structures to Resist the

Effects of Accidental Explosions [7], recommends the use of the
equivalent Single-Degree-of-Freedom (SDOF) method 8. The SDOF
method is often favoured because of its ease of use, relatively few
input requirements and available guidance in the literature [7,9,10],
and is usually presented as design charts in the form of response
spectra.

In these response spectra, the peak dynamic displacement of the
target can be obtained from knowledge of the magnitude of the
applied load and the ratio of the load duration to response time of
the target. These charts were first produced by Biggs [8] and are
based on the assumption of a linearly decaying blast load, rather
than the exponential ‘Friedlander’ decay used in the well-
established empirical load prediction method of Kingery and Bul-
mash [11] and ConWep [12]. This limitation has been addressed by
Gantes and Pnevmatikos [13], where response spectra are provided
for exponential loading, under the assumption that the target is
part of a reflecting surface that is infinite in lateral extent.

In the case of reflecting surfaces that cannot be said to be
infinite, it is well known that blast wave clearing can signifi-
cantly reduce the late-time pressure acting on the target face
[14e17], reducing the total reflected impulse by up to 50%
[18,19]. The influence of clearing on the response of elastic tar-
gets subjected to blast loads has recently been investigated by
the current authors [20,21], however the effect of target plas-
ticity remains un-quantified. The purpose of this paper is two-

* Corresponding author. Tel.: þ44 (0) 114 222 5724.
E-mail address: sam.rigby@shef.ac.uk (S.E. Rigby).

Contents lists available at ScienceDirect

International Journal of Impact Engineering

journal homepage: www.elsevier .com/locate/ i j impeng

0734-743X/$ e see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijimpeng.2013.12.006

International Journal of Impact Engineering 66 (2014) 37e47

Delta:1_-
Delta:1_given name
Delta:1_surname
mailto:sam.rigby@shef.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijimpeng.2013.12.006&domain=pdf
www.sciencedirect.com/science/journal/0734743X
http://www.elsevier.com/locate/ijimpeng
http://dx.doi.org/10.1016/j.ijimpeng.2013.12.006
http://dx.doi.org/10.1016/j.ijimpeng.2013.12.006
http://dx.doi.org/10.1016/j.ijimpeng.2013.12.006


fold: firstly, to develop a complete set of response spectra for
finite targets subjected to blast loads, and secondly, to compare
these spectra to existing guidance to quantify the effect of blast
wave clearing.

2. Elasticeplastic SDOF systems

2.1. The SDOF method

The dynamic equation of motion of a distributed system, for
example a simply supported beam with a transiently varying,
spatially uniform load (as in Fig. 1) is given as

m€zþ c _zþ kz ¼ FðtÞ; (1)

wherem, c and k are the mass, damping and stiffness of the system,
€z, _z and z are the acceleration, velocity and displacement, and F(t) is
the externally applied force. The equivalent SDOF method ‘trans-
forms’ the distributed properties of the real life system into
equivalent single-point properties, where the displacement of the
single-degree system is equated to the point of maximum

displacement in the distributed system, i.e. displacement at mid-
span of a simply supported beam.

Ignoring damping, the dynamic equation of motion of the
equivalent system is

me€zðtÞ þ kezðtÞ ¼ FeðtÞ; (2)

where me, ke and Fe(t) are the equivalent mass, stiffness and force.
Equating the work done, kinetic energy and internal strain energy
of the two systems, the dynamic equation of motion for the SDOF
system now becomes

KMm€zþ KLkz ¼ KLFðtÞ: (3)

where the mass factor, KM, and load factor, KL, are used to transform
the distributed properties into the single point equivalent values.
The transformation factors for various support conditions and
loading distributions, based on the assumption of the normalised
deflected shape, f, can be found in the literature [7e10].

2.2. Elasticeplastic response spectra

In the analysis performed by Biggs [8], elasticeplastic SDOF
systems are subjected to a linearly decaying uniform load

FeðtÞ ¼
8<
:

Fe;max

�
1� t

td;lin

�
; t � td;lin

0; t > td;lin
(4)

where p(x,y,t) is the peak force and KS is the duration of the trian-
gular load. The SDOF system has a bilinear elastic-perfectly plastic
resistance function as shown in Fig. 2. This comprises linear elastic
behaviour with spring resistance kez, until the elastic limit, zE, is
reached, followed by plastic behaviour with constant spring resis-
tance, Ru, thereafter. After the peak displacement, zmax, is reached,
the displacement decreases and the system begins to rebound.
When rebounding, the system again behaves elastically until a

Nomenclature

A panel area
b waveform parameter (decay of exponential pressure

time curve)
c damping coefficient
d thickness
E Young’s modulus
F force
Fe equivalent force
Fe,max peak equivalent force
Fe,min peak negative phase equivalent force
H scaled target height
ir reflected positive phase specific impulse
I second moment of area
k stiffness
ke equivalent stiffness
KL load factor
KM mass factor
KS spatial load factor
L span
m mass
me equivalent mass
Mm moment capacity at mid-span

p pressure
pr,max peak reflected pressure
R range from charge centre (stand-off),
Ru elastic resistance
t time
ta time of arrival of blast wave
td positive phase duration
t�d negative phase duration
td,lin positive phase duration (linear approximation)
T natural period
W explosive mass
x length along beam
z displacement
zE elastic limit
zmax peak displacement
zmax,inf peak displacement under exponential (non-cleared)

load
zmax,lin peak displacement under linear load
_z velocity
€z acceleration
Z scaled distance (R/W1/3)
r density
sy yield strength
f normalised deflected shape
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Fig. 1. (a) Distributed and (b) equivalent SDOF systems.
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