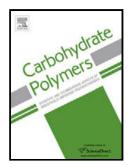
Accepted Manuscript

Title: Structural characterization of bioactive heteropolysaccharides from the medicinal fungus *Inonotus obliquus* (Chaga)

Authors: Christian Winther Wold, Christian Kjeldsen, Alexandre Corthay, Frode Rise, Bjørn E. Christensen, Jens Øllgaard Duus, Kari Tvete Inngjerdingen

PII: S0144-8617(17)31448-0

DOI: https://doi.org/10.1016/j.carbpol.2017.12.041


Reference: CARP 13103

To appear in:

Received date: 15-9-2017 Revised date: 30-11-2017 Accepted date: 14-12-2017

Please cite this article as: Wold CW, Kjeldsen C, Corthay A, Rise F, Christensen BE, Duus JO, Inngjerdingen KT, Structural characterization of bioactive heteropolysaccharides from the medicinal fungus *Inonotus obliquus* (Chaga), *Carbohydrate Polymers* (2010), https://doi.org/10.1016/j.carbpol.2017.12.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Structural characterization of bioactive heteropolysaccharides from the medicinal fungus *Inonotus obliquus* (Chaga).

Christian Winther Wold^{a*}, Christian Kjeldsen^b, Alexandre Corthay^c, Frode Rise^e, Bjørn E. Christensen^d, Jens Øllgaard Duus^b, Kari Tvete Inngjerdingen^a

^a School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, N-0316 Oslo, Norway
^b Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
^cTumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, P.O. Box 4950
Nydalen, NO-0424 Oslo, Norway

^d NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

^eDepartment of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway * Corresponding author

Highlights

- Complex heteropolysaccharides were isolated from *Inonotus obliquus* sclerotia.
- The main structural motif in most fractions consisted of $(1\rightarrow 3)$ and $(1\rightarrow 6)$ - β -Glc.
- A $(1\rightarrow 6)$ -linked α -3-O-Me-Gal was found in *I. obliquus* for the first time.
- The polysaccharides displayed *in vitro* immunomodulatory effects.

Abstract

The aim of this paper was to perform a comprehensive characterization of polysaccharides isolated from the interior (IOI) and exterior (IOE) parts of the fungus *Inonotus obliquus*. Preextraction with DCM and MeOH, followed by water and alkali extraction and ethanol precipitation gave two water extracts and two alkali extracts. Neutral and acidic polysaccharide fractions were obtained after anion-exchange chromatography of the water extracts. The neutral polysaccharides (60-73 kDa) were heterogeneous and branched and consisted of a $(1\rightarrow 3)$ -linked β-Glc backbone with (1 \rightarrow 6)-linked kinks in the chain at approximately every fifth residue, with branches of $(1\rightarrow 6)$ -linked β -Glc in addition to substantial amounts of $(1\rightarrow 6)$ -linked α -Gal with 3-O-methylation at about every third Gal residue. The acidic polysaccharide fractions (10-31 kDa) showed similar structural motifs as the neutral fractions differing mainly by the presence of (1 \rightarrow 4)-linked α-GalA and α-GlcA. β-Xyl, α-Man and α-Rha were also present in varying amounts in all fractions. No major structural differences between the IOI and IOE fractions were observed. An alkaline polysaccharide fraction (>450 kDa) was obtained from the IOI alkali extract, and consisted mainly of $(1\rightarrow 3)$ - and $(1\rightarrow 6)$ -linked β -Glc and $(1\rightarrow 4)$ -linked β -Xyl. Several of the fractions showed *in vitro* immunomodulatory effect by increasing NO production in the murine macrophage and dendritic cell lines J774.A1 and D2SC/1. Most fractions managed to increase NO production only at the highest concentration tested (100 µg/ml), while the neutral

Download English Version:

https://daneshyari.com/en/article/7783722

Download Persian Version:

https://daneshyari.com/article/7783722

<u>Daneshyari.com</u>