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a b s t r a c t

The probabilistic method presented in this paper facilitates a simplified description of fatigue crack
growth under variable amplitude loading and the estimation of fatigue life. Fundamental to the descrip-
tion is a finite difference equation with the coefficients originated from the Paris formula which models
the dynamics of crack growth. The characteristic features of crack growth under overload–underload
cycles existed in an exploitive loading were modeled by using the modified Willenborg retardation
model. The presented probabilistic method has a good confirmation by experimental research of crack
behavior and fatigue life estimation for an aeronautical aluminum alloy sheet 2024-T3 subjected to var-
iable amplitude load program. This method needs an extension over the crack initiation period.

� 2011 Published by Elsevier Ltd.

1. Introduction

The operational spectrum of a structure is a typical variable
amplitude spectrum. Exploitive loading induces in the materials
physical phenomena that influence on crack growth behavior. This
is called as the effect of load interaction which means the impor-
tance both of initial crack length at a given moment and the load
time history for the crack growth in the materials. There exist
numerous physical mechanisms that accompany the crack exten-
sion under single or multiple overloads and underloads imposed
cyclically or randomly in the base line load. The most frequently
mentioned mechanisms are either plastically induced crack closure
and crack rate retardation associated with the plastic zone ahead of
a crack tip that it was induced by an tensile overload cycle.
Compressive underload cycle, on the other hand, leads to the crack
tip sharpening and the crack rate increase. Distribution of residual
stresses in the plastic zone, the thickness of a particular component
as well as mechanical properties of the material are determining
factors that contribute to irregular fatigue crack growth [4–7,17].
Therefore, it is a considerable interest to quantitatively predict
the experimental tendency in crack growth behavior due to
changes in load, material and geometry of a component. For this
goal a certain empirical prediction models (Elber, Wheeler,
Willenborg) as well as numerical simulations of crack growth
under variable amplitude load derived by the codes FASTRAN, NAS-
GRO, CORPUS and AFGROW find the application.

For predicting fatigue crack growth rate in a component sub-
jected to random loading probabilistic models are proposed. The

reasons for applying probabilistic approach are as follow: inhomo-
geneity of real material, scatter of mechanical properties of the
material, randomness of cracking process and technological condi-
tions (quality of manufacturing). There, it is required that the mod-
el and the real object are physically identical as regards the time
and point of crack initiation, crack propagation period and fatigue
lifetime of a component.

The factors mentioned above have an uncertain influence on fa-
tigue crack growth process and lead to the scatter both of critical
crack size and fatigue lifetime being experimentally estimated.
This problem is particularly important in the case of damage toler-
ance design at random loading. To describe this influence the fun-
damental parameters were randomized and transformed into
statistical distribution function.

Exemplary reviews of existing probabilistic models were de-
rived earlier by Castiglioni [8] and later by Kim and Shim [9]
and Castillo et al. [10] as well. Generally, in the literature stochas-
tic crack growth models are based upon two approaches. One
type of them derives models from randomization of deterministic
equation of crack growth by providing the distribution of the ran-
dom time to crack length and non-negative random variable X(t):
da/dN = f(DK)X(t), while X(t) is a Gaussian random noise. A special
case of time random variable to reach a critical crack size was
proposed by Tang and Spencer [11] modeling the Virkler data
by two-state Markov process. The tests were conducted for as-
sumed certain distribution functions such as lognormal, normal
and Weibull. A stochastic Markov chain model based on the
Paris–Erdogan equation was applied to describe the distribution
of fatigue life under constant stress intensity factor range in [9].
According to the authors the method mentioned above requires
a small number of tests to describe the variability of fatigue crack
growth.
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For modeling random fatigue crack growth a model based on
cumulative random jump process was proposed by Sobczyk and
Trębicki [12]. In the model, fatigue process was characterized by
dominant crack length and represented by a random sum of ran-
dom elementary increments of Poison distribution function. For
prediction of fatigue crack growth Ghonem and Provan [13]
adopted discontinuous Markov random process. A general method-
ology for stochastic fatigue life prediction under variable loadings
was proposed in [14]. To achieve this goal a nonlinear fatigue dam-
age accumulation rule and a stochastic S–N curve were combined.
A new probabilistic model was considered for fatigue crack growth
prediction which was based on the Wöhler curve experimentally
determined for actual component [10]. Extreme value theory was
applied to derive the density of crack size.

The second type of the stochastic approaches derives models
from randomization of the Paris–Erdogan equation. In these mod-
els a generalized the Fokker–Planck equation describes the tempo-
ral variability of crack length distribution. Using the solution of this
equation the fatigue life distribution can be determined.

Early fatigue crack growth stage was modeled based on contin-
uum damage mechanics applied to each grain and grain boundary
[15]. The properties of the grains to damage accumulation were
considered to be random variables described by the Weibull distri-
bution. Probabilistic approach was applied to predict short and
long crack growth regimes using two-parameter Weibull distribu-
tion for expressing the resistance of grain boundaries to the fatigue
[16]. Fundamental to the description were finite differences equa-
tion as well as the Fokker–Planck differential equation which mod-
eled the dynamics of crack growth.

In the present paper a probabilistic approach to predicting fati-
gue crack growth rate under variable amplitude loading with
imposing multiple overload–underload cycles is developed on the
basis of modified Willenborg model [2]. The capacity of this model
will be experimentally verified for the 2024-T3 Alclad aluminum
alloy sheets subjected to variable amplitude loading. The influence
of the shape of loading spectrum on crack rate is analyzed by
means of electron microscopes SEM and TEM. The details of the
microfractographic analysis concerning the 2024-T3 alloy and its
correlation with the fatigue crack growth rate under single and
multiple overloads–underloads can be found in [1].

2. Probabilistic method of fatigue crack growth rate predicting

In order to calculate the retardation effect on the crack rate due
to overload–underload cycles the improved Wheeler model named
as the Willenborg model was applied. Both these models are based
on the assumption that crack growth is controlled not only by
the plastic zone but also by residual deformation left in the wake
of the crack as it grows through previously deformed material
[2]. In the Willenborg model there was introduced a reduced stress
rred which is needed to get through the plastic zone rp.OL created by
the tensile-overload cycle. In the case of an underload half-cycle
with compressive stress either the current plastic zone of the ra-
dius rpi or the overload plastic zone of the radius rp.OL ahead of
the crack tip are reduced by the radius rcp. In accordance with [2]
the plastic zone radius rcp which results from the interaction of
an elastic material in the vicinity of growing crack is determined
by:

rcp ¼
1

D � p
DKUL

2 � r0:2

� �2

¼ 1
D � p

K� � Kmin;UL

2 � r0:2

� �2

ð1Þ

where D = 2 (plane stress state) or 6 (plane strain state), K� ¼
min KCA

min;Kth

� �
; KCA

min is the minimum stress intensity factor in a
base CA cycle; Kth is the threshold stress intensity factor; Kmin,UL is

the minimum K associated with the underload (UL); r0.2 is the off-
set yield stress.

The retardation factor Cp is given by [2]:

Cp ¼
rpi � rcpi

aOL þ ðrp:OL � rcp:ULÞ � ai

� �n

ð2Þ

where ai is the current crack length corresponding to the ith cycle;
aOL the crack length at which overload is applied; rpi the current
plastic zone size corresponding to the ith cycle; rcpi the current com-
pressive plastic zone size corresponding to the ith cycle; rp.OL the
plastic zone size due to tensile overload; rcp.UL the compressive plas-
tic zone size due to compressive underload and n is the shaping
exponent, which is generally obtained through experiments.

The stress redistribution occurs ahead of the crack tip as a result
of a tensile reaction of an elastic material surrounding the growing
crack and the compressive stresses acted in the monotonic plastic
zone ahead of this crack. Assuming that the reduced stresses rred

operate in the plastic zone, the condition for the crack growth
retardation in the Willenborg model is as follows [2]:

aOL þ ðrp:OL � rcp:ULÞ ¼ ai þ
1

D � p
Kred

r0:2

� �2

¼ ai þ
1

D � p
rred �

ffiffiffiffiffiffiffiffiffiffiffi
p � ai
p

Mk

r0:2

� �2

ð3Þ

hence, the stress required for getting through the plastic zone is
determined by the equation:

rred ¼
ffiffiffi
2
p
� r0:2

Mk
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aOL þ ðrcp:OL � rcp:ULÞ � ai

ai

s
ð4Þ

where Mk is the geometrical factor; r0.2 the offset yield stress; ai the
current crack length corresponding to the ith cycle; aOL the crack
length at which overload is applied; rp.OL the plastic zone size due
to tensile overload and rcp.UL is the compressive plastic zone size
due to compressive underload.

In the model, it is assumed that the value of compressive stres-
ses rc existed in the overload plastic zone is equal to the reduced
stress rred minus the maximum applied overload stress, that is
rc = rred � rmax,OL. The values of rmax,i and rmin,i are reduced by
the compressive stress rc in each load cycle. In a fatigue cycle
the values of effective maximum rmax eff,j and minimum stresses
rmin eff,j equal respectively to:

rmaxeff ;j ¼ rmax;j � rc ¼ 2rmax ;j � rred

rmin eff ;j ¼ rmin;j � rc ¼ rmin;j þ rmax;j � rred

maxð0;reff ;jÞ ¼
0 where 0 P reff ;j

reff ;j where reff ;j > 0

� ð5Þ

The effect of the stress ratio R on crack growth rate should be
taken into account while calculating effective stress changes are
replaced by a constant-amplitude cyclic zero-to-tension load pro-
gram (R = 0) according to:

Dreff ;j ¼ rmax eff ;j � ð1� RjÞr j ¼ 1 . . . q; Rj P 0 ð6Þ

where rmax eff,j and Rj are the maximum effective stress and the
stress ratio for jth stress block, respectively. The value of the stress
modification factor c is 0.68 for aluminum alloys under variable-
amplitude loading with the stress ratio R P 0.

Let us assume that the crack growth rate follows the Paris for-
mula under each stress cycle:

DKj ¼ Mk;j � Dreff ;j �
ffiffiffiffiffiffiffiffiffiffiffi
p � aj

p
ð7Þ

where DKj is the stress intensity factor for the length aj of the crack;
Mk,j is the geometrical factor Mk for the length aj of the crack; and

D. Kocańda, M. Jasztal / International Journal of Fatigue 39 (2012) 68–74 69



Download English Version:

https://daneshyari.com/en/article/778379

Download Persian Version:

https://daneshyari.com/article/778379

Daneshyari.com

https://daneshyari.com/en/article/778379
https://daneshyari.com/article/778379
https://daneshyari.com

