International Journal of Fatigue 38 (2012) 100-107

Contents lists available at SciVerse ScienceDirect

International Journal of Fatigue

journal homepage: www.elsevier.com/locate/ijfatigue ]

Toward a proper statistical description of defects

A. Cetin®*, A. NaessP

2 Department of Engineering Design and Materials, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
b CeSOS & Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

ARTICLE INFO ABSTRACT

Article history:

Received 5 May 2011

Received in revised form 22 October 2011
Accepted 23 November 2011

Available online 23 December 2011

The Gumbel distribution (asymptotic theory) in conjunction with block maximum sampling is widely
adopted to describe material defects. However, the appropriateness of asymptotic theory is questionable,
as the block sizes are often relatively small due to practical limitations. In this paper, a recent and more
appropriate sub-asymptotic extreme value distribution is presented and discussed in context of defects.

Block maximum sampling scenarios with two different underlying defect size distributions (Weibull and
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log-normal) were simulated. It was demonstrated that the presented sub-asymptotic distribution is to a
higher degree capable of capturing the actual extreme value behavior when compared to its asymptotic
counterpart, i.e. Gumbel distribution. Furthermore, a comparison with the generalized extreme value dis-
tribution, which was adopted as an approximate/empirical distribution function, was also performed.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Fatigue failures originating from material defects (inclusions,
voids, etc.) are widely discussed and documented in the literature.
For instance, the influence of defects on the fatigue properties of
various engineering metals has been studied thoroughly by
Murakami [1]. In that regard, statistical methods are often applied
to describe characteristics of defects.

The main purpose of statistical methods in design against fati-
gue is to make inference about unobserved events, e.g. estimate
the largest defect in a component. Thus, proper statistical descrip-
tion of defect sizes is imperative.

The defect size distribution is estimated from appropriate sam-
ples of defects obtained from small reference volumes or areas,
which are hereafter referred to as blocks. The sampling process
usually involves various practical and analytical techniques
depending on the type of defects and material in question [2-4].
Nonetheless, three main strategies are utilized; (i) direct sampling,
(ii) peak over threshold sampling, and (iii) block maximum
sampling.

Direct sampling is the most transparent method. The defect size
distribution is estimated by counting and measuring every defect
present in a block. However, this method is limited by resources
and technical equipment, often rendering it unfeasible. For exam-
ple, it is difficult to quantify the smallest defects due to limitations
with equipment. Furthermore, there are also theoretical difficulties
associated with this strategy since an explicit assumption regard-
ing the parametrization of the distribution has to be made.
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Peak over threshold sampling is an attempt to remedy some of
the difficulties associated with direct sampling. In this sampling
strategy, only defects larger than some threshold are considered
and described by means of truncated distributions. However, the
theoretical difficulties mentioned above are also valid for this
strategy. Thus, asymptotic theory and assumptions are often
invoked, and the generalized Pareto distribution is used to describe
the defects [5,6].

In block maximum sampling, k separate and equally sized
blocks are defined and only the largest defect present in each of
them is sampled. In that regard, asymptotic extreme value theory
is usually invoked and the Gumbel distribution (EV-I) is adopted
to describe the largest defects [7]:
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A valid objection against the block maximum sampling strategy
is that obtainable information from a technical point of view, e.g.
the 2nd largest defect in every block, is ignored. Nonetheless, this
is by far the most convenient strategy. Due to this virtue, it is
maybe the most common one as well. Therefore, this paper will
only treat this strategy.

The use of EV-I in conjunction with block maximum sampling is
to some extent theoretically justified, since samples do indeed
come as extreme values. This approach is general in the sense that
few assumptions of practical importance regarding the underlying
defect size distributions are necessary. However, EV-I arise from
asymptotic theory and great care must be shown when using it.
As it was demonstrated by Cohen [8,9], convergence to the asymp-
totic distributions is often slow. That is, the number of defects
present in a block must be very large. The practical implication is
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often that the data points do not align on a straight line in a
Gumbel probability plot. Thus, the appropriateness of EV-I in
describing defects is often questionable.

Recently, Naess and Gaidai [10] proposed a new distribution
function to describe the extreme response of dynamical systems.
Unlike EV-I, this distribution function is not exclusively based on
asymptotic theory and thus to a certain extent is capable of captur-
ing the sub-asymptotic behavior of extremes. In this paper, the
proposed sub-asymptotic distribution function (SAD) is adopted
as the proper distribution function of the largest defect sizes. In
Section 2, the distribution function is presented in the context of
describing defects. In Section 3, SAD is applied and compared to
EV-I and the generalized extreme value distribution in a simulated
block maximum method scenario. Although the statistical method
presented in this paper has been known for some time, its applica-
tion in fatigue appears to be new.

2. Extreme value theory
2.1. General

Before proceeding, fundamental aspects of extreme value the-
ory and concepts essential for the following discussions will be
presented. This is to ensure that this paper is comprehensible
and self-contained. It may also be helpful to consult one of numer-
ous textbooks on the subject.

Consider blocks containing N defects and assume that the loca-
tion of the defects are randomly and independently distributed. Let
the independent and identically distributed (i.i.d.) random variable
X denote the size of defects. Their cumulative distribution function
(CDF) is denoted F(x) = Prob (X < x). The purpose of this paper is to
give a rational statistical description and determine the distribu-
tion function of the extreme value X) = max{X;,i=1,...,N}.

Under the i.i.d. assumption, that is, the X; are independent cop-
ies of a common random variable X, the exact CDF of the extreme
values is obtained from order statistics [7]:

Fym (%) = (1-S@x)" 2)

where S(x) =1 — F(X). Exploiting the series definition of the expo-
nential function, Eq. (2) can be expressed as:
F,m (x) = q(x,N)exp{—NS(x)} (3)
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remainder term in the Taylor series. Obviously, q(x,N) will approach
unity as N — oo. More importantly, g(x,N) will be fairly close to
unity even for intermediate values of N.

Assuming blocks with equal number of defects may appear to
be a stretch in practical applications. A more realistic scenario
would be blocks of equal spatial size with the number of defects
in each block varying stochastically as a Poisson process of a cer-
tain intensity. Curiously, the resulting CDF would be similar to
Eq. (3), where the value of q(x,N) would be unity regardless of N.
Therefore, the effect of choosing either of the discussed assumption
would be insignificant in practice. (The current assumption was
chosen since it is more transparent and comprehensible).

where q(x,N) = (1 —%+w+m) and is related to the

2.2. Asymptotic distribution functions

Asymptotic extreme value theory states that as N — oo, FX&S’QX (%)
approaches one of three possible limiting distribution functions of-
ten referred to as Type I (Gumbel), Type II (Fréchet) and Type III
(Weibull) extreme value distributions. It is said that F(x) is in the
domain of attraction of a Type I/Type II/Type Il extreme value
distribution. However, this is not merely a formal mathematical

statement. The authors would like to emphasize that the purpose
is to model physical reality. Each of the three limiting extreme
value distributions describe distinctively different behaviors.

The asymptotic extreme value distributions can be jointly
parametrized with GEV (Type I ¢ — 0), Type II (¢ > 0) and Type Il
(€<0)):

Feav(X) = exp {— [1+ g(%”)] 71/8} 4)

The most common distribution function (such as normal, log-
normal, gamma and Weibull) are in the domain of attraction of a
Type I extreme value distribution. Thus, in order to avoid unneces-
sary complications, the underlying defect size distribution is as-
sumed to be in the domain of attraction of a Type I extreme
value distribution; that is, the resulting extreme value distribution
will asymptotically approach EV-I. (Distribution functions in the
domain of attraction of a Type Il and a Type Il extreme value
distributions do in most cases possess properties that make them
unlikely candidates for defect size distribution). Makkonen [11]
discusses plausible candidates for the underlying defect size distri-
bution and concludes that Weibull and log-normal distributions
are the most likely ones. Although the discussion is somewhat
limited, it is consistent with the assumption made here.

The main concern is that the size of blocks is often relatively
small due to practical limitations and N is not sufficiently large
for the asymptotic approximation to be valid. The result is often
that the data points do not align on a straight line in a Gumbel
probability plot. Therefore, the appropriateness of the asymptotic
extreme value theory in defect size description is questionable.

The poor fit is often misinterpreted as EV-I not being the correct
distribution. However, the poor performance of EV-I in approxi-
mating the distribution of extremes in practical problems was al-
ready demonstrated empirically by Fisher and Tippet [12] in
1928. Cohen [8,9] demonstrated that Type Il or Type IIl extreme va-
lue distributions would be better approximations for the observed
data. Therefore, GEV with unconstrained parameters will fit the ob-
served data better even if EV-I is the asymptotically correct one.
That said, extrapolation in order to make inference beyond the ob-
served data should be avoided as the tail behavior of GEV may be
significantly different from the actual behavior. Notice also that
even if GEV offers better fit for the observed data it will asymptot-
ically diverge from the actual behavior.

In that regard, SAD is developed and presented as an appropri-
ate extreme value distribution.

2.3. Sub-asymptotic distribution function

The motivation behind SAD is the following. The distribution of
X% is well defined for two limiting cases; (i) N = 1, where the ex-
treme value distribution is the underlying distribution and (ii)
N — oo, where the extreme value distribution approaches EV-I.
However, most practical applications of block maximum sampling
is bound to end up in a region between these two cases. The aim is
to describe this intermediate region appropriately while ensuring
consistency with the asymptotes.

Consider Eq. (3); NS(x) comes directly from the underlying de-
fect size distribution, but its exact form is in general unknown.
Examining it for the relevant underlying distribution functions, re-
veals that it often takes the form of an exponential function.
Encouraged by this and the asymptotic form (EV-I), Eq. (3) may
be expressed as:

() = { exp{—exp(g(x))} x>xr

F
m Z(x) X < Xr
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where g(x) and Z(x) are suitable functions, and xr is an appropriate
tail marker. The function Z(x) is often not of practical interest and
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