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a b s t r a c t

The role of surface stress on fracture of elastic solids has been studied by two group of
researchers with different conclusions. One group concludes that surface stress has no
effect on energy release rate except that the singularity of the crack tip field is stronger
than the usual inverse square root singularity dictated by linear elastic fracture mechanics.
The other group concludes that the singularity of the stress field reduces to a logarithmic
singularity, thus implying that the local energy release rate is zero. In this letter we resolve
this paradox by examining the solution of a special case where surface stress is isotropic
and independent of surface strain. We show that surface tension resists crack growth
by lowering the applied energy release rate while retaining the inversely square root
singularity of the elastic crack tip field. We demonstrate this idea by solving a perturbation
problem where the capillary length is much smaller than the crack length. A closed form
expression for the local energy release rate is obtained in the limit of small surface tension.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The characteristic length scale that controls the defor-
mation of a solid due to its surface tension σ is given by
the ratio of the surface tension to its shear modulus G. For
hard materials such as metals and ceramics, this ‘‘capil-
lary’’ length σ/G is smaller than atomic dimensions, hence
surface tension effect can be ignored. However, the cap-
illary length of soft materials such as hydrogels and elas-
tomers range from tens of nm to hundreds of µm. For this
class of materials, surface tension can drive shape change,
for example, a sharp corner in a soft material cannot re-
main sharp because of surface tension [1,2]. Surface ten-
sion can also flatten surfaces of structures made by replica
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molding [3,4] and cause Plateau instability in thin gel fil-
aments [5]. However, surface tension can resist deforma-
tion, for example, both experiments and theory has shown
that the contact mechanics of spheres and cylinders on
soft elastic substrates can be affected by solid surface ten-
sion [6–11]. Liu et al. [12] have shown that surface tension
induced Laplace pressure can cause closure of a crack in-
flated by hydrostatic pressure.

There are very few experimental studies examining the
role of surface stress in fracture since actualmeasurements
of surface stresses are very difficult to make. The first
theoretical study on the influence of surface stress on the
fracture of elastic solids were carried out by Thomson,
Chuang and Lin [13] in 1986 (hence forth referred as
TCL). In their model, they ignored the curvature of the
deformed crack faces, and the effect of surface stresses is
modeled as a line force acting at the crack tip. Their analysis
showed that even though the singularities due to the line
force are much higher than the typical inverse square root
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Fig. 1. Figure on left is a schematic of the geometry, where an undeformed semi-infinite plane strainMode I crack occupying the negative x axis is subjected
to a remote far field controlled by the applied stress intensity factor KA . Figure on right shows the deformed crack face, which is subjected to a Laplace
pressure induced by local curvature of the deformed crack surface.

singularity in linear elastic fracture mechanics, they have
no effect on the crack tip energy release rate [see remarks
after Eq. (42) in their paper].

It is interesting to compare TCL’s result with the more
recent studies of Kim, Schiavone and Ru [14,15] (hence
forth refer as KSR). Using the surface constitutive model
of Gurtin and Murdoch [16], KSR [14] in 2010 formulated
a small strain theory of fracture to study the effect of
surface tension on fracture of a plane strain crack loaded
in Mode I and Mode II. Their numerical results showed
that the stress field directly ahead of a Mode I crack is
bounded, irrespective of the magnitude of the surface stress
(as long as it is not exactly zero). In a later paper [14], KSR
reexamined their numerical solution in greater details and
concluded that the stress field directly ahead of the crack
tip has aweaker logarithmic singularity. In both cases their
numerical results imply that the stress intensity factor (or
the local stress intensity factor Klocal = KA + KST ) is exactly
zero. In otherwords, the applied stress intensity factorKA is
canceled by the negative stress intensity factor KST caused
by the curvature induced Laplace pressure acting to close
the crack faces. Since a zero local stress intensity factor
implies that local energy release rate is also zero, their
result is the exact opposite of TCL’s. Furthermore, because
surface tension is represented as a line force, the stress field
near the crack tip in TCL model is more singular than the
inverse square root singularity of the classical theory and
this result also contradicts the result of KSR.

The goal of this letter is to resolve this paradox. To
simplify the analysis, we focus on Mode I cracks and the
surface stress σαβ is assumed to be isotropic and is a
constant independent of surface strain, that is, σ = σ I
where σ is the surface tension (force/length). To focus
attention on the crack tip, we consider the ‘‘Small Scale
Surface tension’’ problem in which the effect of surface
tension is confined to a region that is small with respect to
typical specimen dimensions. As in Small Scale Yielding in
classical fracture theory [17], the crack is semi-infinite and
lies on the negative x axis, as shown in Fig. 1. The boundary
condition is that at distances far from the crack tip, the
stress and deformation field approaches the usual inverse
square root singularity of the classical elasticity solution.
More details will be given in the next section.

The curvature induced Laplace pressure pL resisting the
opening of the crack (see Fig. 1) is related to the surface
tension σ and the curvature of the deformed crack faces κ
by:

pL = σκ κ =
v′′

1 + (v′)2
3/2 , (1)

where v is the crack opening displacement and a prime
denotes differentiation with respect to x. In KSR, v′ is
assumed to be small everywhere andκ is approximatedby:

κ = v′′. (2)

Due to this approximation, the governing equation de-
scribing the crack tip field is linear and the full machin-
ery of analytic function theory can be used to formulate
the crack problem. In contrast, TCL avoided this issue all
together by placing a line force at the crack tip—the curva-
ture induced Laplace pressure appears as a delta function
in their formulation [13].

It is easy to understand why Klocal had to be zero in
KSR’s analysis, that is, the local stress field near the crack
tip cannot have an inverse square root singularity. Indeed,
assuming Klocal is positive, the crack opening for the upper
crack face near the crack tip is:

v =
2(1 − υ)Klocal

G
√
2π

√
−x, x < 0 (3)

where υ is the Poisson’s ratio and G the shear modulus.
Substituting (3) into κ = v′′ gives

κ ∝ −Klocal |x|−3/2 , x → 0− (4)

Eqs. (4) and (1) imply that the Laplace pressure has a non-
integrable singularity; such a singular pressure fieldwill in-
duce an infinite negative stress intensity factor at the crack
tip, which means that Klocal goes to negative infinity. This
is a contradiction to the original assumption that Klocal is
positive so the only possibility is Klocal = 0, which implies
that the stress is bounded or has a weaker singularity.

The fact that Klocal = 0 brings up the possibility a line
force can exist at the crack tip. Indeed, in linear elasticity
fracturemechanics, the crack tip deforms into a cusp shape
if the stress is bounded at the tip—the Dugdale-Barenblatt
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