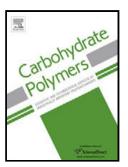
Accepted Manuscript

Title: *N*-[4-(*N*,*N*,*N*-trimethylammonium)benzyl]chitosan chloride: Synthesis, interaction with DNA and evaluation of transfection efficiency

Authors: Sergei V. Raik, Daria N. Poshina, Tatiana A. Lyalina, Dmitry S. Polyakov, Vadim B. Vasilyev, Andreii S. Kritchenkov, Yury A. Skorik

PII: S0144-8617(17)31379-6

DOI: https://doi.org/10.1016/j.carbpol.2017.11.093


Reference: CARP 13044

To appear in:

Received date: 30-7-2017 Revised date: 22-11-2017 Accepted date: 26-11-2017

Please cite this article as: Raik, Sergei V., Poshina, Daria N., Lyalina, Tatiana A., Polyakov, Dmitry S., Vasilyev, Vadim B., Kritchenkov, Andreii S., & Skorik, Yury A., N-[4-(N,N,N-trimethylammonium)benzyl]chitosan chloride: Synthesis, interaction with DNA and evaluation of transfection efficiency. *Carbohydrate Polymers* https://doi.org/10.1016/j.carbpol.2017.11.093

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

N-[4-(N,N,N-trimethylammonium)benzyl]chitosan chloride: synthesis, interaction with DNA and evaluation of transfection efficiency

Sergei V. Raik^{1,2}, Daria N. Poshina¹, Tatiana A. Lyalina³, Dmitry S. Polyakov⁴, Vadim B. Vasilyev^{2,4}, Andreii S. Kritchenkov¹, Yury A. Skorik^{1,5,*}

¹Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation

²Saint-Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg 199034, Russian Federation

³Institute of Cytology of the Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg 194064, Russian Federation

⁴Institute of Experimental Medicine, ul. Akademika Pavlova 12, St. Petersburg 197022, Russian Federation

⁵Federal Almazov Medical Research Centre, ul. Akkuratova 2, St. Petersburg 197341, Russian Federation

*Corresponding author.

Tel.: + 7 812 3283224; Fax: +7 812 3286869

E-mail address: yury skorik@mail.ru

Highlights

- TMAB-CS was synthesized in a wide range of the degree of substitution
- Novel cationic derivatives did not show specific cytotoxicity up to 300 µg/mL
- TMAB-CS formed stable polyplexes with DNA of 200-300 nm and ζ-potential of 20–30 mV
- Low-substituted TMAB-CS showed more pronounced transfection efficiency

Abstract

A novel cationic chitosan derivative, N-[4-(N,N,N-trimethylammonium)benzyl]chitosan chloride (TMAB-CS), with different degrees of substitution (DS) was synthesized by a chemoselective interaction of 4-formyl-N,N,N-trimethylanilinium iodide with chitosan amino groups using a

1

Download English Version:

https://daneshyari.com/en/article/7784758

Download Persian Version:

https://daneshyari.com/article/7784758

<u>Daneshyari.com</u>