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a b s t r a c t

Multi-scale simulations at extreme scales in terms of both physical length scales and
computational resources are presented. In this letter, we introduce a hierarchically
parallel computational homogenization solver that employs hundreds of thousands of
computing cores and resolvesO(105) inmaterial length scales (fromO(cm) toO(100nm)).
Simulations of this kind are important in understanding the multi-scale essence of
many natural and synthetically made materials. Thus, we present a simulation consisting
of 53.8 Billion finite elements with 28.1 Billion nonlinear equations that is solved on
393,216 computing cores (786,432 threads). The excellent parallel performance of the
computational homogenization solver is demonstrated by a strong scaling test from 4,096
to 262,144 cores. A fully coupled multi-scale damage simulation shows a complex crack
profile at the micro-scale and the macroscopic crack tunneling phenomenon. Such large
and predictive simulations are an important step towards Virtual Materials Testing and can
aid in development of new material formulations with extreme properties. Furthermore,
the high computational efficiency of our computational homogenization solver holds great
promise for utilizing the next generation of exascale parallel computing platforms that are
expected to accelerate computations through orders of magnitude increase in parallelism
rather than speed of each processor.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The societal and economic pressure for improved per-
formance of engineered systems has placed great empha-
sis on development of materials with extreme proper-
ties and their application in extreme environments. For
example, development of advanced high strength multi-
phase steels [1] for improved automotive crash worthi-
ness, structured materials [2] and meta-materials [3],
fiber/particle reinforced polymeric composites [4,5] with
wide application from aerospace to consumer sports
equipment, and multi-functional systems such as self-
healing [6] or electrically conductive adhesives [7] has be-
come reality. In many cases, these advanced materials are
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multi-scale in nature, and accurately predicting their re-
sponse is essential for improved design and safety assess-
ment.

Of particular interest to this letter are predictive multi-
scale simulations of these complex heterogeneous mate-
rials in typical mechanical systems. In such engineering
analysis and optimal design, phenomenological constitu-
tive models of heterogeneous materials may prove insuf-
ficient. Thus, detailed simulations that includemicrostruc-
tural effects and relevant micro-scale physics are required.
Direct numerical modeling (DNM), which captures all of
the relevant physics and length scales in a single sim-
ulation, is an accurate method for predicting the in situ
multi-scale behavior of heterogeneous materials. How-
ever, even for small structures, these simulations can be-
come extremely large as the required numerical resolu-
tion leads to a large number of degrees of freedom (DOFs).
Such large simulations remain intractable, even for today’s
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Fig. 1. Schematic of the multi-scale kinematics for heterogeneous interfaces with a comparison of length-scales.

supercomputers [8]. Moreover, the parallel algorithmic
complexity of such computations mitigates the poten-
tial improvements gained on high-performance comput-
ing (HPC) systems [9–11]. On the other hand, computa-
tional homogenization (CH) [12–14] provides an alterna-
tive highly accurate modeling strategy with reduced com-
putational requirements. However, until recently [12], CH
has frequently been regarded as impractical or limited to
small theoretical examples.

In this letter, we present extreme scale simulations (in
terms of both physical scales and computing resources) us-
ing a hierarchically parallel CH solver [12] that enables the
efficient computation of large realistic engineering prob-
lems. In particular, we focus on failure of heterogeneous
interfaces such as adhesive layers. For the first time, fully-
coupled multi-scale simulations are used to predict im-
portant fracture properties, such as toughness and crack
speed, from the material behavior of the individual micro-
scale constituents in the 3D finite strain regime.

In addition, we show the solver’s ability to efficiently
compute the fully coupled nonlinear multi-scale response
of structures with resolution from O(cm) to O(100 nm),
containing 53.8 Billion finite elements and 28.1 Billion
nonlinear equations. Furthermore, we demonstrate ideal
computational strong scaling performance of the hierar-
chically parallel solver using up to 262,144 computing
cores. The ability to compute such large problems is an im-
portant step towards predictive simulations and the Vir-
tual Materials Testing paradigm. In addition, future exas-
cale HPC resources are expected to accelerate computa-
tions through orders of magnitude increase in parallelism
rather than increasing the speed of each processor [15–18].
Therefore, the high scalability of CH makes it a promising
approach to efficiently use future exascale HPC resources
for scientific investigation and discovery.

2. Computational homogenization for interfaces

Before we proceed to extreme scale computations, we
review the CH theory and its implementation [19,20,12]
for completeness of the presentation. The CH of heteroge-
neous interfaces is shown schematically in Fig. 1, where
two bodies (adherends) denoted as Ω± are separated by
a heterogeneous layer with thickness lc . The layer is col-
lapsed to an interface, Γ , and a representative unit cell
(RUC, Θ) is locally attached to each material point on the
interface. The RUC contains all of themicro-scale complex-
ity in terms of both structure and constitutive behavior.
Under applied load, the deformation of the macro-scale

adherends, Ω±, is described by the deformation gradient,
F = I + ∇⃗X⃗ u⃗, where u⃗ are the macro-scale displace-
ments. The deformation of a macroscopic point on the in-
terface, Γ , is described by the deformation gradient, FM =

I +
1
lc


u⃗


⊗ N⃗ , where N⃗ is the normal to the interface
(see Fig. 1) and


u⃗


= u⃗+
− u⃗− is the opening displace-

ment of the interface. The deformation within the micro-
structure is a function of both macro- and micro-variables,
with F = FM+∇⃗Y⃗ w⃗, where w⃗ are themicro-scale displace-
ment fluctuations.

The weak form of macro-scale equilibrium neglecting
inertia and body forces is given by

Ω±

SM :


F T

∇⃗X⃗δu⃗
sym

dΩ±
+


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t⃗M ·
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−


∂Ωt

t⃗p · δu⃗ dA = 0. (1)

In Eq. (1), SM is the second Piola–Kirchhoff stress given by
a known constitutive model for the adherends, while t⃗M is
the macro-scale traction vector across the interface that is
computationally derived from the RUC as described in the
sequel.

The Hill–Mandel condition for interfaces is given by
[19,12,20]
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Wm(FM + ∇⃗Y⃗ w⃗) dΘ,

(2)

which relates the unknown macro-scale traction–
separation potential,ψ , to the average known micro-scale
strain energy density,Wm. Taking variations of Eq. (2) with
respect to the macro-scale and micro-scale variables leads
to

lc
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
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sym

dΘ = 0, (3)
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

· N⃗. (4)

Eq. (3) is theweak form ofmicro-scale equilibrium, and Eq.
(4) is the closure equation for themacro-scale traction vec-
tor across the interface employed in Eq. (1). In Eqs. (3)–(4),
Sm = 2 ∂Wm/∂C where C = F TF . Note that in this work,
wemakeuse of semi-periodicmicro-scale boundary condi-
tions (w⃗ = 0⃗ ∀Y⃗ ∈ Γ ± and w⃗+

= w⃗−
∀Y⃗ ∈ ∂Θ±) and our

RUCs are periodic in the Y⃗1,2-directions (see Fig. 1). Other
admissible boundary conditions are discussed in [20].
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