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The electrical responses of materials and devices subjected to thermal inputs, such as
the Seebeck effect and pyroelectricity, are of great interest in thermal-electric energy con-
version devices. Of particular interest are phenomena which exploit heterogeneities in the
mechanics of heterostructured materials and systems for novel and unexplored thermal-
electric responses. Here we introduce a new mechanism for converting thermal stimuli into
electricity via structural heterogeneities, which we term “pyro-paraelectricity”. Specifi-
cally, when a paraelectric material is grown on a substrate with a different lattice constant,
the paraelectric layer experiences an inhomogeneous strain due to the lattice mismatch,
establishing a strain gradient along the axis of the layer thickness. This strain gradient, in-
duced via the lattice mismatch, can be multiple orders of magnitude higher than strain gra-
dients in bulk materials imparted by mechanical bending (0.1 m~"). Consequently, charge
separation is induced in the paraelectric layer via flexoelectricity, leading to a polarization
in proportion to the dielectric constant. The dielectric constant, and thus the polarization, in
turn changes with temperature. Therefore, when a strained metal-insulator-metal (MIM)
heterostructure is subjected to a thermal input, changes in the permittivity generate an
electrical response. We demonstrate this concept of “pyro-paraelectricity” by employing
a MIM heterostructure with a high permittivity sputtered barium strontium titanate (BST)
film as the insulating layer in a platinum sandwich. The resulting strain gradient of more
than 10* m~! due to the structural heterogeneity was verified by an X-ray diffraction scan.
To demonstrate “pyro-paraelectricity”, the MIM heterostructure was subjected to a ther-
mal input, thereby generating current which was highly correlated to the thermal input. A
theoretical model was found to be consistent with the experimental data. These results
prove the existence of “pyro-paraelectricity”.
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1. Introduction

The development of new methods to study the re-
sponses of materials and devices to thermal stimuli could
enable new fundamental insights and applications in
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micro-robotics [1-4], thermal-electric generators [5-7],
and biomedical sensors [8-11]. The thermal-electrical re-
sponse is also important from an energy scavenging per-
spective, as 60% of energy currently produced from all
sources in the United States is lost in the form of wasted
heat [12]. Various fundamental mechanisms involving
the electrical responses of materials and devices to ther-
mal inputs have been well characterized, including the
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Seebeck effect [13,14], thermoelectricity [5-7], and py-
roelectricity [8,9,15]. These mechanisms offer unique
advantages including high reliability, environmental frie-
ndliness, and freedom from moving parts [6]. In addition,
breakthroughs in thermal-electrical responses have been
demonstrated over recent years, including the realization
of flexible forms for wearable electronics [7], and novel
thermoelectric phenomena in hierarchical material archi-
tectures [16] and high ZT values in nanomaterials [ 17-20].
However, methods exploiting heterogeneities in the com-
positions and mechanics of heterostructured materials,
systems, and devices are relatively unexplored as a viable
means for investigating thermal-electric responses.

Flexoelectricity is the generation of an electric polariza-
tion in an insulating solid subjected to a strain gradient.
In contrast to piezoelectricity, which occurs only in crys-
tal point groups without a center of symmetry, flexoelec-
tricity can occur in all point groups. Yet, the flexoelectric
effect is weaker than the piezoelectric effect due in part to
the smaller flexoelectric coupling coefficients [21-23]. Fur-
ther, due to mechanical restrictions, the maximum strain
gradient introduced by external stress is on the order of
0.1 m~! [24] in rigid bulk materials, further limiting the
flexoelectric polarization inducible by external stress [21].
By contrast, a reasonable amount of uniform stress can be
easily applied even to a rigid material, and the piezoelec-
tric response is more easily measureable [22]. For instance,
a maximum current of ~50 pA was generated and mea-
sured under a ~0.011 m~! strain gradient in a bulk crystal
of barium strontium titanate (BST) [25]. This magnitude of
current is much lower than typical currents (100-500 nA)
that can be generated via piezoelectricity [26-29].

Studies of flexoelectricity have mostly involved the
properties of bulk materials, with very few reports on
potential applications [25,30-33]. Advances in epitaxial
engineering provide an alternative means of imposing sig-
nificant strains and strain gradients in thin films. For exam-
ple, by introducing a lattice mismatch of ~1%, it has been
shown that a large strain can be induced in a SrTiO5 thin
film deposited upon a DyScO3; substrate, with the result
that the SrTiO5; was converted from a paraelectric state into
aferroelectric state by the significant stress induced via the
lattice mismatch [34]. Epitaxial engineering has also been
utilized to introduce large strain gradients in thin film sys-
tems. A previous study with ferroelectric HoMnO3; showed
that a large strain gradient (10° m~") can be induced via
lattice mismatch, and the ferroelectric characteristics of
the HoMnOs thin film can be tuned by a flexoelectricity-
induced electric field [35]. Epitaxial engineering with
flexoelectric systems can thus inspire new fundamental
research directions in flexoelectricity.

Here, we demonstrate a new mechanism for converting
thermal stimuli into electricity using such heterogeneous
architectures, which we refer to as “pyro-paraelectricty”.
Specifically, a dielectric layer in a paraelectric state is first
grown on a material of a different lattice constant. Due to
the lattice mismatch, the dielectric layer undergoes an in-
homogeneous strain due to the heterointerface [35-38]. As
a result, a strain relaxation is established along the axis of
the layer thickness. The strain gradient triggered by the lat-
tice mismatch can reach 10° m~!, more than six orders of

magnitude larger than in bulk materials [24]. Since the di-
electric layer is in a paraelectric state, the strain will not
incur any piezoelectric polarization, simplifying interpre-
tation of the measurement results. Nevertheless, the strain
gradient does result in separation of charges in the dielec-
tric layer via flexoelectricity, leading to a polarization.

Fig. 1 illustrates this concept in detail. Fig. 1(a) shows
that when a flexoelectric material is grown upon a ma-
terial of a different lattice constant, the lattice mismatch
results in strain relaxation along the axis of thickness,
forming a strain gradient and thus a flexoelectric polar-
ization. A metal-insulator-metal (MIM) heterostructure
sandwich containing the flexoelectric material as the in-
sulator layer is a convenient form factor for measuring
this polarization. Next, the dielectric constant of the di-
electric layer is temperature-dependent, so the polariza-
tion changes with temperature as shown in Fig. 1(b). Since
the polarization varies with temperature, when the MIM
sandwich is subjected to a thermal input, changes in
permittivity induced by the thermal input will lead to a
measureable electrical response. A schematic of this mech-
anism is described in Fig. 1(c).

Specifically, we demonstrate this concept of “pyro-
paraelectricity” by employing a MIM heterostructure con-
taining a high-permittivity (dielectric constant ~200),
flexoelectric sputtered BST film as the insulating layer in
a platinum sandwich. The MIM heterostructure was then
subjected to a cycled thermal input. This led to the gen-
eration of a current which was highly correlated with the
thermal input. Low-permittivity SiO, (dielectric constant
~5) was used as a control, which showed a comparatively
negligible electrical response under the same thermal in-
put. A theoretical model was found to be consistent with
the experimental data. These results prove this new effect,
both experimentally and theoretically.

2. Fabrication and characterization of MIM heterostruc-
ture

A high-permittivity BST film (Ba,Sr;_,TiO3, x = 0.625)
was chosen as the dielectric layer, since the polarization
induced by flexoelectricity is proportional to the permit-
tivity [39]. Dielectric materials exhibit their largest dielec-
tric constants during the ferroelectric-paraelectric phase
transition, as has been observed in both bulk materials [25]
and thin films [40]. Therefore, the composition of BST was
chosen such that the Curie temperature (~0 °C, estimated
from [41]) is below room temperature (20 °C), to ensure
that the BST is paraelectric while achieving a high dielec-
tric constant. The MIM heterostructure fabrication pro-
cess began by sputtering Pt on a thermally-grown oxide
(~300 nm) on a silicon wafer (University Wafers, Boston,
MA), followed by post-annealing at 800 °C in air to im-
prove Pt adhesion to SiO,. A 150 nm BST film (stoichiomet-
ric Bagg3Srg.37TiO3 target purchased from ACI Alloys Inc,
San Jose, CA) was then RF sputter-deposited on the Pt/SiO,
wafer, followed by post-annealing at 700 °C in Ar. Finally,
a 100 nm Pt top electrode of area 500 x 500 pm? was
electron-beam evaporated on the BST through a shadow
mask. A schematic of the final MIM structure is shown in
Fig. 2(a).
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