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a b s t r a c t

A framework for accurately modeling fatigue crack growth in ductile crystalline solids is necessarily mul-
tiscale. The creation of new free surface occurs at the atomistic scale, where the material’s cohesive
strength is controlled by the local chemistry. On the other hand, significant dissipation during fatigue
crack growth takes place at a size scale that can be modeled appropriately by conventional continuum
mechanics. The intermediate size scale where the discreteness of dislocations comes into play is the main
origin of the hysteresis needed for fatigue and of the high stresses required for atomistic separation to
take place. We focus on recent developments which permit analyses of fatigue crack growth involving
the direct coupling of disparate size scales. Although no analyses have been carried out directly coupling
size scales from the atomic to the conventional continuum, the ingredients to do so are in place. We pro-
vide background that illustrates the key role played by the intermediate discrete dislocation size scale
and review steps that have been taken to permit direct size scale coupling. The prospects and modeling
needs for further developments are also discussed.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Fatigue crack growth is the growth of a crack under cyclic load-
ing conditions at a driving force that is smaller than is required for
the same crack to grow under monotonic loading conditions. For
crystalline metals, there is a threshold driving force below which
fatigue crack growth does not occur or, more likely, occurs at a rate
too low (say less than 10�8 mm/cycle) to be of concern in applica-
tions. For increasing values of driving force, the average crack
growth rate at first increases steeply and subsequently enters the
Paris law regime, see e.g. Suresh [1]. Near the threshold plastic
deformation is confined to a relatively small volume in the vicinity
of the crack tip. As the crack driving force increases, the plastically
deformed volume emanating from the crack tip increases but ef-
fects such as those arising from net Burgers vector (geometrically
necessary dislocations) and the discreteness of dislocation sources
still come into play in the near crack tip region.

Typically, analyses of fatigue crack growth are carried out using
a fatigue crack growth law that is specified a priori. In contrast, the

focus here is on modeling where crack growth can arise naturally
as a consequence of the solution to an initial/boundary value
problem.

A variety of continuum theories have been proposed to rational-
ize fatigue crack behavior in the Paris law regime. In some cases,
e.g. [2,3], it is presumed that the fatigue crack growth rate is pro-
portional to the cyclic crack opening displacement which implies
a Paris exponent of two. Damage accumulation models, e.g. [4,5],
give rise to a Paris exponent of four. More recent continuum plas-
ticity based models have been developed, see e.g., [6–8], which can
lead to a wider range of behaviors but at present the continuum
based models have yet to account either for the wide range of Paris
exponents observed experimentally or for the observed scaling
with material properties, e.g. [9–11].

Dissipation is necessary for fatigue. For an elastic system (i.e.,
the structure, component or specimen together with the imposed
loading is appropriately modeled as elastic), failure either occurs
during the first cycle or not at all since the system traverses the
same states in each cycle. Hence, the description of dissipation is
key for modeling fatigue crack growth. The dissipation affecting fa-
tigue crack growth occurs over many scales: fatigue crack growth
rates in metals are environmentally sensitive, for example, oxide
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formation on new crack surfaces can affect the course of fatigue
crack growth; dissipation in the near-tip dislocation structures that
develop under cyclic loading lead to a short crack effect and to a
dependence on material properties, for example yield strength,
that differs from what classical continuum descriptions of plastic-
ity predict; for larger plastic zone sizes significant dissipation oc-
curs away from the near crack tip vicinity. In general, more than
one of these scales plays a significant role during the course of fa-
tigue crack growth so that a multiscale modeling framework is
needed for a predictive theory. Such a framework does not exist
at present but significant steps are being taken.

The mesoscale, where discrete dislocation effects need to be ac-
counted for, plays a central role in mediating between atomic scale
effects and dissipation processes that can be modeled appropri-
ately using conventional continuum descriptions. The organized
dislocation structures near a crack tip give rise to much higher
stress levels to drive atomic scale processes than are predicted
by conventional continuum plasticity, e.g., [12,13]. Computational
discrete dislocation modeling of threshold conditions of fatigue
crack behavior originated in the studies of [14,15]. Deshpande
and co-workers [13,16–18] supplemented that work in a series of
fatigue crack growth studies using the framework of [19] for for-
mulating and solving general boundary value problems with dis-
crete dislocation plasticity. The presence of a fatigue threshold
and Paris law behavior emerged as a natural outcome of the
boundary value problem solution. As the same formulation has
been used to also analyze crack growth under monotonic loading
conditions, the crack growth behaviors under monotonic and cyclic
loading conditions can be compared. Furthermore, this framework
permits fatigue crack growth in multi-phase materials to be mod-
eled which is important since in structural metals fatigue cracks
can initiate in brittle second phase particles and then propagate
into the ductile matrix.

Here, we briefly review some discrete dislocation plasticity pre-
dictions for fatigue crack growth. Then, we present some recent
steps taken to carry out multiscale analyses of fatigue crack
growth, where discrete dislocation plasticity is directly coupled
to an atomistic or conventional continuum formulation. Finally,
we discuss limitations of the current framework and prospects
for future developments.

2. Some discrete dislocation predictions

As noted in [12], dislocations play a dual role in the fracture
process under monotonic loading. On the one hand, plastic flow
caused by the motion of dislocations delays crack initiation and in-
creases the resistance to crack growth. On the other hand, it is the
local stress concentrations associated with discrete dislocations in
the vicinity of the crack tip that leads to stress levels of the magni-
tude of the cohesive strength, causing the crack to propagate. This
dual role is key for fatigue in crystalline metals – the dissipation
from dislocation motion provides the irreversibility, while the high
stresses associated with the dislocation structures that form near
the crack tip precipitate crack growth.

Here, we briefly summarize the results from a series of crack
growth analyses under cyclic loading conditions using discrete dis-
location plasticity [16–18,13,20]. Plastic deformation is described
through the motion of large numbers of discrete dislocations,
which are treated as singularities in an isotropic elastic solid. Dis-
tinct from the treatments by [14,15], in our approach the material
model is independent of the presence of a crack. The fracture prop-
erties of the material are embedded in a cohesive surface constitu-
tive relation, so that crack initiation and crack growth are stress as
well as deformation driven. A key aspect of the formulation is that
the plastic stress–strain response and the evolution of the disloca-

tion structure, as well as crack growth are outcomes of the solution
of the boundary value problem. Furthermore, the only distinction
between an analysis of monotonic crack growth and fatigue crack
growth is that in fatigue the remote loading is specified to be an
oscillating function of time. In all these studies, a crack is assumed
to be present from the beginning; the study of fatigue crack initia-
tion within the same framework has been proposed [21] but the
number of cycles that can be computed is limited by the computa-
tional resources required.

2.1. Theory

A brief overview of the theoretical framework is presented;
background and further descriptions are given in [16–18,13,20]
and references cited therein. Initially, the crystal is assumed to
be free of mobile dislocations, but to contain a random distribution
of dislocation sources and point obstacles. The rules for dislocation
nucleation and motion use the Peach–Koehler force as the driving
force. The sources mimic Frank-Read sources and generate a dislo-
cation dipole when the magnitude of the Peach–Koehler force ex-
ceeds a critical value for a specified period of time. The obstacles,
which represent small precipitates or forest dislocations, pin dislo-
cations and release them once the Peach–Koehler force attains a
specified obstacle strength. Annihilation of two dislocations with
opposite Burgers vector occurs when they approach each other
within a critical annihilation distance. Dislocation motion is as-
sumed to occur only by glide with no cross slip. The magnitude
of the glide velocity v ðkÞ of dislocation k is taken to be linearly re-
lated to the Peach–Koehler force f ðkÞ through the drag relation
f ðkÞ ¼ Bv ðkÞ. There is no special dislocation nucleation from the
crack tip.

In the small-scale yielding studies of [16,17,13], loading is pre-
scribed in terms of displacements corresponding to the isotropic
elastic mode I singular field remote from the crack tip; [18,20] ana-
lyze a finite-size specimen under remote uniaxial tension. There is
a single cohesive surface that lies in front of the initial crack. At
each time step, an increment of the remote loading (the mode I
stress intensity factor _K IDt for small scale yielding) is prescribed.
At the current instant, the stress and strain state of the body is
known, and the Peach–Koehler forces on all dislocations can be cal-
culated. On the basis of these forces the dislocation structure is up-
dated, which involves the motion of dislocations, the generation of
new dislocations, their mutual annihilation, their pinning at obsta-
cles, and their exit into the open crack. After this, the new stress
and strain state can be determined.

The field quantities, i.e. the displacement ui, the strain �ij and
the stress rij are determined using the superposition method in
[19],

ui ¼ ~ui þ ûi ; �ij ¼ ~�ij þ �̂ij; rij ¼ ~rij þ r̂ij: ð1Þ

The (�) fields are the superposition of the singular fields of the
individual dislocations in their current configuration while the (^)
fields represent image fields that correct for the actual boundary
conditions and include the response of the cohesive surface. The
sum of the (�) and the (^) fields in (1) gives the solution that satis-
fies all boundary conditions. Since the (^) fields are smooth in the
region of interest, the boundary value problem for them can be
solved using a standard finite element method.

Both reversible and irreversible cohesive traction–displacement
relations have been used. As the cohesive surface ahead of the
crack separates, the magnitude of the traction increases, reaches
a maximum and then approaches zero with increasing separation.
In a vacuum, there is no oxidation of the newly formed surface and
it is expected that this relation is followed in a reversible manner.
When the newly formed surfaces oxidize, the cohesive relation will
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