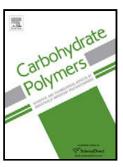
Accepted Manuscript

Title: Phase diagrams of hybrid carrageenans extracted from Ahnfeltiopsis devoniensis and Chondrus crispus

Author: M.D. Torres G. Azevedo L. Hilliou

PII: S0144-8617(15)00862-0

DOI: http://dx.doi.org/doi:10.1016/j.carbpol.2015.09.015


Reference: CARP 10317

To appear in:

Received date: 5-6-2015 Revised date: 3-8-2015 Accepted date: 4-9-2015

Please cite this article as: Torres, M. D., Azevedo, G., and Hilliou, L., Phase diagrams of hybrid carrageenans extracted from Ahnfeltiopsis devoniensis and Chondrus crispus, *Carbohydrate Polymers* (2015), http://dx.doi.org/10.1016/j.carbpol.2015.09.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Phase diagrams of hybrid carrageenans extracted from Ahnfeltiopsis devoniensis and
2	Chondrus crispus
3	
4	M.D. Torres ^{a,b} , G. Azevedo ^a , L. Hilliou ^a
5	
6	KI aggregates show less tendency to phase separate from the liquid matrix than K+I aggregates
7	Gel formation occurs at smaller concentrations and ionic strengths for KI possessing larger fraction of K
8	Below 50 mol% of K, KI gels show different structure and elasticity
9	Large deformation behavior of KI gels does not depend on the KI chemical structure
10	
11	
12	^a Institute for Polymers and Composites/I3N, University of Minho, Campus de Azurém, 4800-058
13	Guimarães, Portugal.
14	^b Department of Chemical Engineering, University of Santiago de Compostela, Lope Gómez de
15	Marzoa St, Santiago de Compostela, E-15782, Spain.
16	
17	Abstract
18	NaCl and KCl phase diagrams of two kappa/iota-hybrid carrageenans (KI) are established, and the
19	rheological properties of obtained solutions and gels are reported. KI were extracted from
20	Ahnfeltiopsis devoniensis and Chondrus crispus seaweeds and showed different chemical
21	composition, 48 mol% of kappa carrageenan (K) and 52 mol% of iota carrageenan (I), and 78 mol%
22	of K and 22 mol% of I, respectively. Phase diagrams are systematically compared those of blends of
23	commercial K and I (K+I) showing equivalent chemical compositions. Results confirm that KI
24	clearly differ from mixtures of K and I. K+I form gels at lower polysaccharide concentration and
25	ionic strength, and exhibit gel separation from a liquid phase when large amount (>0.1 mol/L) of
26	KCl is used. In contrast, no syneresis was found in KI gels formed under similar conditions. Both KI
27	and K+I gels are strain hardening, and show a concentration scaling of the elasticity with exponents
28	ranging from 1.1 to 3.2 depending on the type of salt and ionic strength. The strain at break of KI

Download English Version:

https://daneshyari.com/en/article/7786512

Download Persian Version:

https://daneshyari.com/article/7786512

<u>Daneshyari.com</u>