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The foundation of the theory of functionally graded plates with simply supported edges, under a Fried-
lander explosive air-blast are developed within the classical plate theory (CPT). Within the development
of the theory, the two constituent phases, ceramic and metal, vary across the wall thickness according to
a prescribed power law. The theory includes the geometrical non-linearities, the dynamic effects,
compressive tensile edge loadings, the damping effects, and thermal effects. The static and dynamic

solutions are developed leveraging the use of a stress potential with the Extended Galerkin method and
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the Runge—Kutta method. Validations with simpler cases within the specialized literature are shown.
The analysis focuses on how to alleviate the unwanted effects of large deformations through proper
material selection and the proper gradation of the constituent phases or materials.
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1. Introduction

During combat situations, the structure of army military
vehicles may have to structurally endure the effects of blast
loading. Advances in functionally graded materials (FGM) which
combine the properties of two dissimilar materials has been
a motivating factor in viewing these types of materials as a viable
alternative to the current isotropic metallic structures being
utilized within the army’s military vehicles. Practical examples of
where these FG plate-type structures could be used include: (1)
the underbelly of the vehicle referred to as the hull, or (2) side
plate armor on the vehicle to prevent the effects of blast and
penetration. FGM’s are microscopically nonhomogeneous with
thermo-mechanical properties which vary smoothly and contin-
uously from one surface to another. These graded structures allow
the integration of dissimilar materials like ceramic and metals that
combine different or even incompatible properties such as hard-
ness and toughness.

In this paper, the foundation of the nonlinear theory of func-
tionally graded plate-type structures under an explosive air-blast is
developed. An approximate solution methodology for the intricate
nonlinear boundary value problem is devised, and results that are
likely to contribute to a better understanding of the structural
behavior under an explosive blast with beneficial implications
toward their improved design and exploitation are presented.
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2. Basic assumptions and preliminaries

The plate mid-surface is referred to a cartesian orthogonal
system of coordinates (x, y, z), where z is the thickness coordinate
measured positive in the upwards direction from the mid-surface
of the plate with h being the uniform plate thickness of the plate,
and y is directed perpendicular to the x-axis in the plane of the
plate. See Fig. 1 below.

The nonlinear elastic theory of FG Plates is developed using the
classical plate deformation theory [6]. It is also assumed that the FG
plate is made-up of ceramic and metal phases whose material
properties vary smoothly and continuously across the wall thick-
ness. By applying the rule of mixtures, the material properties such
as Young's Modulus, Density, and Poisson’s Ratio are assumed to
vary across the wall thickness as

P(z) = PVe(2) + PmVin(2), 1)

in which P; and Py denote the temperature-dependent material
properties of the ceramic and metallic phases, of the plate,
respectively, and may be expressed as a function of temperature
[7.8] as

P = Po(P4T™" 41+ PiT+PyT2 + P3T?). (2)

Po, P_4, Py, Py, and P5 are the coefficients of temperature T(K) and are
unique to the constituent materials. V(z) and Viy(z) are corre-
spondingly, the volume fractions of the ceramic and metal,
respectively, fulfilling the relation
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Fig. 1. A simply supported functionally graded plate shown in 2-D under an explosive
blast.

Ve(z) +Vm(z) = 1. (3)
By virtue of Eq. (3), Eq. (1) can be expressed as
P(z,T) = [Pc(T) — Pm(T)]Vc(2) + Pm(T). (4)

(e, 1) 02T 2T = (M) pen D acmDl[(125) (222 1 (2 (15202

By observation, one can deduce that for V{(z) =0, P(z,T) = Py(T)
and for V. =1, P(z,T) = P(T). As a result, V¢(2)e[0, 1].

Two scenarios of the grading of the two basic component pha-
ses, ceramic and metal, through the wall thickness are considered.

Case (1). (The phases vary symmetrically through the wall thickness,
in the sense of having full ceramic at the outer surfaces of the plate and
tending toward full metal at the mid-surface. For this case, V(z) can be
expressed as)

we = (i) (CF9) () (39 ©

where the Signum function is defined as

1, z>0
sgn(z) = 0, z=0. (6)
-1, z<0

N is termed the volume fraction index which provides the material
variation profile through the plate wall thickness, (0 < N < «). A
pictorial representation of the distribution of the constituent
materials is shown below in Fig. 2.

Case (2). (The phases vary non-symmetrically through the wall
thickness, and in this case there is full ceramic at the outer surface of
the plate wall and full metal at its inner surface. For this case, V(z) can
be expressed as)
h+22\N
Ve(z) = (T) .

Below is a pictorial representation of the antisymmetric case
shown in Fig. 3.

It should be noted that in contrast to case (2), where there exists
coupling between stretching and bending, such coupling is not
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Fig. 2. Distribution of the constituent materials through the plate thickness for the
symmetric case.

present for the symmetric case (1). Also, for the purposes of
simplicity the Poisson’s ratio will be assumed to be constant
throughout the plate structure. From Egs. (1)—(7), the effective
material properties of a FG plate can be expressed for the asym-
metric case as

N
[E2.1),p(2.1),0(2.T)] = [Eem(T).pn(T) (D) (" 3,72

+ [Em(T), pm(T), am(T)] ®)

and for the symmetric case as

+ [Em(T), pm(T), am(T)] 9)
v(z,T) = v(T), (10)
where
Eem = Ec — Em, pem = Pc — Pm- (11)

3. Kinematic equations
3.1. The 3-D displacement field
Consistent with the classical plate theory [6], the distribution of

the 3-D displacement quantities through the wall thickness can be
expressed as

U = Uy —2ZWoy (12a)
v = vo— 2Wo, (12b)
w = wy. (12¢)
V4
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Fig. 3. Distribution of the constituent materials through the plate thickness for the
antisymmetric case.
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