Accepted Manuscript

Title: Dispersion of halloysite loaded with natural antimicrobials into pectins: Characterization and controlled release analysis

Author: Giuliana Gorrasi

 PII:
 S0144-8617(15)00263-5

 DOI:
 http://dx.doi.org/doi:10.1016/j.carbpol.2015.03.050

 Reference:
 CARP 9792

To appear in:

 Received date:
 7-5-2014

 Revised date:
 12-3-2015

 Accepted date:
 15-3-2015

Please cite this article as: Gorrasi, G.,Dispersion of halloysite loaded with natural antimicrobials into pectins: characterization and controlled release analysis, *Carbohydrate Polymers* (2015), http://dx.doi.org/10.1016/j.carbpol.2015.03.050

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1 2	Dispersion of halloysite loaded with natural antimicrobials into pectins: characterization and controlled release analysis
3	
4 5	Giuliana Gorrasi
6 7	Department of Industrial Engineering-University of Salerno-via Giovanni Paolo II 132, 84084 Fisciano (SA)-Italy
8 9 10	e-mail: ggorrasi@unisa.it
11	Abstract
12	
13	This paper reports the preparation and characterization of green composites based on pectins and
14	nano-hybrids composed of halloysite nanotubes (HNTs) loaded with rosemary essential oil.
15	Different hybrid percentages were mixed into a pectin matrix, by ball milling in the presence of
16	water. Cast films were obtained and analyzed. Structural organization and physical properties
17	(thermal, mechanical, barrier to water vapor) were correlated to the nano-hybrid content. A
18	preliminary study on the kinetics of release of the rosmarinic acid, chosen as a model molecule, was
19	also performed. This work showed the potential of these systems in the active packaging field
20	where controlled release of active species is required.
21	
22	Keywords: pectins, halloysite, green composites, active packaging, controlled release
23	
24	1. Introduction
25	
26	In the last few years, the possibility of using products from the agriculture and food industry to
27	develop new biodegradable materials for packaging applications is rapidly growing. Furthermore, in
28	food packaging, extending the shelf life of packed products is a critical issue. The development of
29	innovative packaging materials where different functionalities are included in a single film layer
30	is of considerable interest . Nanotechnology is a very promising strategy for improving physical
31	and barrier properties of polymeric materials. The introduction of nanofillers into biopolymers has
32	been shown to be a good strategy to overcome some critical issues, such as a poor barrier to water
33	vapour and low mechanical properties [Sorrentino, Gorrasi, & Vittoria, 2007; Lagaron, & Lopez-
34	Rubio, 2011]. Natural pectins are green emerging materials for food packaging applications. They
35	can be found in the primary walls of the cells and show a complex hetero-polysaccharide structure,
36	containing linear and branched regions [Siew, & Williams, 2008]. The degree of esterification,

Download English Version:

https://daneshyari.com/en/article/7788369

Download Persian Version:

https://daneshyari.com/article/7788369

Daneshyari.com