Accepted Manuscript

Title: Modification of Pine Pulp during Oxygen

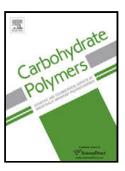
Delignification by Xylan Self-Assembly

Author: Olga Grigoray Joakim Järnström Elina Heikkilä

Pedro Fardim Thomas Heinze

PII: S0144-8617(14)00552-9

DOI: http://dx.doi.org/doi:10.1016/j.carbpol.2014.05.074


Reference: CARP 8941

To appear in:

Received date: 19-12-2013 Revised date: 25-4-2014 Accepted date: 19-5-2014

Please cite this article as: Grigoray, O., Järnström, J., Heikkilä, E., Fardim, P., and Heinze, T., Modification of Pine Pulp during Delignification by Xylan Self-Assembly, Carbohydrate Polymers (2014),http://dx.doi.org/10.1016/j.carbpol.2014.05.074

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	TT: -1.1: -1.4-
I	Highlights

- Cold-alkali extracted xylan was purer than hot water extracted xylan
- Successful assembly of xylans onto pine fibers in oxygen delignification stage
- ToF-SIMS showed even distribution of the biopolymers on the fiber surfaces
- Resistance of the xylan-fiber assembly to pulp processing
- Improved pine pulp performance by birch xylan assembly in a fully bio-based system

7

8

Download English Version:

https://daneshyari.com/en/article/7791227

Download Persian Version:

https://daneshyari.com/article/7791227

<u>Daneshyari.com</u>