Accepted Manuscript

Title: Effect of Retrogradation Time on Preparation and Characterization of Proso Millet Starch Nanoparticles

Author: Qingjie Sun Min Gong Ying Li Liu Xiong

PII: S0144-8617(14)00345-2

DOI: http://dx.doi.org/doi:10.1016/j.carbpol.2014.03.094

Reference: CARP 8756

To appear in:

Received date: 26-12-2013 Revised date: 27-3-2014 Accepted date: 28-3-2014

Please cite this article as: Xiong, Q. S. M. G. Y. L. L., Effect of Retrogradation Time on Preparation and Characterization of Proso Millet Starch Nanoparticles, *Carbohydrate Polymers* (2014), http://dx.doi.org/10.1016/j.carbpol.2014.03.094

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of Retrogradation	Time on	Preparation	and	Characterization

1

2	of Proso Millet Starch Nanoparticles
3	Qingjie Sun* Min Gong Ying Li Liu Xiong
4	School of Food Science and Engineering, Qingdao Agricultural University
5	(Qingdao, Shandong Province, 266109, China)
6	*Correspondence author (Tel: 86-532-88030448, Fax: 86-532-88030449, e-mail:
7	phdsun@163.com), School of Food Science and Engineering, Qingdao Agricultural University,
8	266109, 700 Changcheng Road, Chengyang District, Qingdao, China.
9	Abstract
10	Starch nanoparticles were prepared from proso millet starch using a green and facile method
11	combined with enzymolysis and recrystallization. Scanning electron microscopy (SEM), X-ray
12	diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning
13	calorimeter (DSC) and thermal gravimetric analysis (TGA) were used to characterize the
14	morphology and crystal structure of the starch nanoparticles prepared with different retrogradation
15	time (0.5, 4, 12, and 24 h). The results showed that the sizes of the starch nanoparticles were
16	between 20 nm and 100 nm. The crystal pattern changed from A-type (native starch) to B-type
17	(nanoparticles), and the relative crystallinity of the nanoparticles increased obviously, as compared
18	with the native starch. The nanoparticles prepared with the 12 h retrogradation time had the
19	highest degree of crystallinity (47.04%). Compared to conventional acid hydrolysis to make starch
20	nanoparticles, the present approach has the advantage of being quite rapid and presenting a higher
21	yield (about 55%).
22	Keywords: proso millet starch, starch nanoparticles, debranching, recrystallized, retrogradation

Download English Version:

https://daneshyari.com/en/article/7791331

Download Persian Version:

https://daneshyari.com/article/7791331

<u>Daneshyari.com</u>