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a b s t r a c t

This article presents a Combined Particle-Element Method (CPEM) for 3D intense loading computations
that include severe distortions. It includes the numerical algorithms and example computations. The
advantages of this method are that the lower-strained particles (stress points) are computed with a fast
and accurate finite-element formulation, and the higher-strained particles are computed with a
meshless-particle formulation that can handle severe distortions. Furthermore, the meshless-particle
algorithm (with MLS strain rates and weak-form forces) is consistent and does not exhibit tensile in-
stabilities. It is also well suited for conversion of finite elements into variable-connectivity meshless
particles because the conversion does not require deletion of elements and addition of particles. Instead
there is simply a branch point based on equivalent plastic strain. The basic approach can also be used for
the element algorithm only or the particle algorithm only.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

During the past decade there has been an increase in the
development of Lagrangian algorithms for high-velocity impact and
other intense loading conditions, as various techniques have been
developed to handle thehighdistortions that often result fromthese
conditions. There has always been a desire to use Lagrangian codes,
instead of Eulerian codes, as there is no dispersion of internal vari-
ables and the interfaces are well defined. They also require less CPU
time and less memory (especially if large voids are included in the
computation). The historical problem with Lagrangian codes for
these problems is that highly distorted elements lead to very small
integration time increments, and the computations cannot continue
in an efficient manner. In the late eighties two 3D algorithms [1,2]
were presented for the automatic erosion of distorted finite ele-
ments. Here, highly distorted elements are automatically removed
from the computation and the contact interfaces are automatically
updated. This allows Lagrangian formulations to be used for very
large distortions, although some inaccuracies are introduced when
the elements are discarded, as they cannot develop any stresses. The
masses can be retained however.

Also, in the late eighties, some meshless-particle algorithms
began to appear. These algorithms are Lagrangian (as the mass is
attached to the particle nodes which move with the material), but
large distortions are achieved by allowing the particle nodes to
have new neighbor nodes as the computation progresses. An early
(particle) NABOR algorithm attempted to allow for severe distor-
tions by using variable nodal connectivity, and it also included a
link between the NABOR nodes and finite elements [3]. Soon after,
Libersky and Petschek introduced a Smoothed Particle Hydrody-
namics (SPH) algorithm that included material strength [4]. This
was the beginning of a vast movement of meshless-particle
research that was prevalent during the nineties.

A desirable feature of the SPH algorithms is that all of the cycle-
to-cycle variables (mass, position, velocity, stress, strain, damage,
internal energy, etc.) are carried at the nodes, and this co-location
characteristic allows for a relatively simple algorithm that can
include very large distortions. Unfortunately, this co-location
approach has some problems that involve tensile instabilities and
a lack of consistency. Even though the original SPH algorithm has
been improved, the general co-location approach has some limi-
tations. It also became evident that the meshless-particle algo-
rithms for high-velocity impact require considerably more CPU
time than finite-element algorithms, at least until the finite ele-
ments become highly distorted. This increased CPU time is* Corresponding author. Tel.: þ1 612 460 4488; fax: þ1 612 460 4492.
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generally due to the search routines that are required to determine
the nearest neighbors, and to the greater number of neighboring
particles (when compared to nodes per element).

An obvious approach is to link the elements and particles such
that the elements represent the mildly distorted material and the
particles represent the highly-distorted material, with some early
applications provided by Johnson and others [3,5,6]. These early
applications included predetermining the distribution of particles
and elements, as well as automatically converting distorted ele-
ments into particles. Since then a Generalized Particle Algorithm
(GPA) has been developed [7,8], and it has been used together with
improved conversion (of elements into particles) algorithms [9,10].

A hybrid particle-finite element method is another approach
that uses both elements and particles. This method was initially
presented by Fahrenthold and Horban [11], and has undergone
additional development by Fahrenthold and others since then [12].
This hybrid algorithm computes the compressive pressure at the
nodes (particles), with the strength and tensile pressure computed
in the elements. This approach allows large distortions and frag-
mentation to be represented, it eliminates tensile instabilities in the
particles, and it allows the contact to be performed within the
particle algorithm. Another approach for a hybrid algorithm was
recently presented by the authors [13], and it was determined that
there are both advantages and disadvantages for the conversion
and hybrid algorithms.

In 2000 Randles and Libersky [14] presented an algorithm that
introduced (massless) stress points, together with velocity points
(that include mass), and this algorithm exhibited consistency and
did not develop tensile instabilities. Their formulation included
stress points on the outer boundaries, and a Moving Least Squares
(MLS) determination of the strain rates (spatial derivatives of the
velocity fields) and the forces (spatial derivatives of the stress
fields) from the strong form. Unfortunately, a robust interface al-
gorithmwas not developed with this approach, and it could not be
used effectively for a wide range of high-velocity impact problems.
More recently, Li et al. [15] presented an Optimal Transportation
Meshfree (OTM) method that is also based on material points and
nodal points. Here the nodal forces are determined from a weak
formulation and the algorithm appears to be more robust.

The previous references [1e15] provide a sequential trail of
research and development that has led to the work presented here.
However, there has been a vast amount of other work performed
for both meshless particles and for coupling between finite ele-
ments and particles. In one approach, co-location meshfree
methods are developed by strain-smoothing stabilization of the
nodally integratedweak form [16e18]. These have been adapted for
impact and penetration by integrating robust contact algorithms
[19,20]. In another approach, the ease of enriching meshfree shape
functions is exploited for the purpose of modeling cracks [21,22].
Enrichment allows the introduction of discontinuities into the
continuum and the simulation of multiple randomly oriented and
propagating cracks, which are essential features of impact and
penetration events.

One practical distinction between the various coupling schemes
that have been introduced is whether the meshfree methods are
implemented adaptively. Early schemes generally lack adaptivity,
and require embedding the meshfree discretization into the initial
meshes in the regions where large deformations are expected.
More recent contributions, such as the one introduced here,
generally offer an algorithm for adaptively replacing finite elements
with meshfree methods when a deformation criterion is met.

Another distinction between the schemes is themeans bywhich
the two methods are coupled. Many schemes enforce compatibility
of the displacements and velocities along the interface between the
methods, along with a suitable means of transmitting forces, with

the details having direct bearing on accuracy. One approach uses
master-slave coupling of the nodes along the interface, such as the
aforementioned non-adaptive scheme of Johnson et al. [5,6], and
the subsequent adaptive version [9,10]. Another approach imposes
compatibility of the displacements and velocities by defining a
ramp function to transition linearly between the finite-element and
meshfree fields across a region where the two methods overlap
[23]. Hegen [24] enforced compatibility by introducing a Lagrange
multiplier to the potential energy functional, and this approachwas
generalized by Rabczuk and Belytschko [25]. Sauer [26] devised a
similar scheme to enforce compatibility of finite elements and
smooth-particle hydrodynamics.

While enforcing compatibility of the displacements and veloc-
ities is a common approach to coupling, it is not the only one. In the
bridging-domain method [27], ramp functions are defined in re-
gions where the two methods overlap for the purpose of tran-
sitioning linearly between the finite-element and meshfree
discretizations of the integrands in the weak form. This approach
was devised as a multiscale method, but it also serves to distinguish
regions of high and low deformations. Chuzel-Marmot et al. [28]
introduced a similar formulation and demonstrated it for deep
penetration of concrete targets. In the aforementioned hybrid
method of Fahrenthold and co-workers [11,12], the interface be-
tween the particle and element methods is essentially distributed
throughout the domain, with shared dependence on the same
displacement and velocity fields. A good summary and comparison
of some of these coupling schemes is provided by Rabczuk et al. [29].

This article presents numerical algorithms and example com-
putations for a 3D Combined Particle-Element Method (CPEM) that
is intended for problems involving severe distortions. It is based on
some of the concepts in these aforementioned articles [8,14,15], and
an extension of the author's initial CPEM work for 2D plane strain
geometry [30]. Both the 2D and 3D algorithms are incorporated
into the EPIC code [31]. Although it is not practical to make direct
comparisons with all of the aforementioned approaches the CPEM
has some very positive characteristics: It will be shown that it is
easy to generate the initial mesh (as it is identical to a finite element
mesh), the computational method runs fast (as most of the region is
composed of finite elements), both the element and meshless-
particle algorithms are accurate (they converge, fulfill the patch
test, and do not form tensile instabilities), there is no need to add
particles during the conversion process (but rather there is a
straightforward transition from the element formulation to the
particle formulation), and the method is robust (for severe strains,
fragmentation, and contact).

2. The combined particle-element method (CPEM)

For this new approach the initial mesh is input as solid finite
elements (constant stress), and then it is put into a meshless-
particle structure in the preprocessor. Triangular and quadrilat-
eral elements can be used for 2D geometry, and tetrahedral and
hexahedral elements can be used for 3D geometry. The integration
points of the original elements are transformed into massless stress
points, and the nodes from the elements carry the mass and accept
forces from the stresses. CPEM uses a particle structure, rather than
an element structure, with the element's stress point being a par-
ticle that initially has a fixed number of neighbor (particle) mass
nodes. In contrast, the GPA and SPH algorithms carry all the vari-
ables on all the nodes [7].

When the equivalent plastic strain in a stress point is less than a
user-specified value (εcrit) a finite-element algorithm (formulated
within a particle structure) is used to update the strain rates and
strains at the stress point, and to compute forces for the (fixed
connectivity) particle nodes. When the equivalent plastic strain in a
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