ELSEVIER

Contents lists available at ScienceDirect

Carbohydrate Polymers

journal homepage: www.elsevier.com/locate/carbpol

Short communication

Statistical optimization for production of chitin deacetylase from *Rhodococcus erythropolis* HG05

Yuying Sun^{a,b}, Jiquan Zhang^{b,*}, Shengjun Wu^a, Shujun Wang^a

- ^a Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, 59 Cangwu Road, Lianyungang 222005, China
- ^b Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China

ARTICLE INFO

Article history:
Received 13 October 2013
Received in revised form 2 November 2013
Accepted 7 November 2013
Available online 15 November 2013

Keywords: Chitin deacetylase Rhodococcus erythropolis Statistical optimization

ABSTRACT

A strain producing chitin deacetylase (CDA) was isolated and identified as *Rhodococcus erythropolis* by morphological characteristics and 16S rDNA analysis, named as *R. erythropolis* HG05. By Plackett–Burman and central composite design, CDA production from *R. erythropolis* HG05 was increased from 58.00 U/mL to 238.89 U/mL. With the crude enzyme from *R. erythropolis* HG05, the hydrolysate components from colloid chitin were chito-oligosaccharides with polymerization number larger than hexaose.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

At present, chitosan is mainly produced by thermo-alkaline deacetylation of chitin. The process is environmentally unsafe, tedious to control and results into heterogeneous range of products (Chang, Tsai, Lee, & Fu, 1997; Muzzarelli, 2012). Alternatively, chitosan can also be produced through chitin deacetylase (CDA, EC 3.5.1.41), which overcomes most of disadvantages in alkali treatment (Trudel & Asselin, 1990). Some microorganisms were reported to produce CDAs (Dai, Li, Hu, & Sa, 2011; Pareek, Vivekanand, Saroj, Sharma, & Singh, 2012; Zhao, Park, & Muzzarelli, 2010). It seems that CDAs from different sources may have different activity, stability, specificity, and efficiency. CDAs assisted enzymatic conversion to chitosan needs intensive screening of novel CDA hyper-producers.

Medium components and culture conditions have great influence on extracellular enzyme production and are different for each microorganism. Optimization of variables by statistical designs can eliminate the limitations of one-factor-at-a-time approach. The objective of this research was to apply Plackett-Burman design, followed by response surface methodology to optimize medium components and culture conditions for CDA production by *Rhodococcus erythropolis* HG05. In addition, the enzymatic hydrolysate was also analyzed.

2. Materials and methods

2.1. Strain, media and culture conditions

The bacterial strain was isolated from soil samples collected from Lianyungang of China and maintained on Luria Bertani (LB) medium agar slants.

Pre-culture was prepared by growing the strain in LB medium at $30\,^{\circ}\text{C}$, $165\,\text{r/min}$ till strain density reached 3.0 at $OD_{650\,\text{nm}}$. Main culture medium consisted (g/L): powder chitin (Sigma C7170) 10.0, (NH₄)₂SO₄ 25.0, yeast extract 5.0, glucose 0.5, MgSO₄·7H₂O 1.0, K₂HPO₄·3H₂O 1.0, KH₂PO₄ 0.3, and NaCl 0.5, pH 7.0. Main culture was maintained at the same conditions as preculture for 60 h, inoculated with 4% inoculum (V/V) and culture flasks (250 mL) containing 40 mL medium. All experiments were triplicated.

2.2. CDA assay

The supernatant of main culture centrifugated at $10,000 \times g$ for 10 min $(4 \,^{\circ}\text{C})$ was used in CDA assay and 4-nitroacetanilide was used as the substrate. The reaction mixture, containing 0.1 mL of 200 mg/L4-nitroacetanilide, 0.1 mL of diluted enzyme solution, and 0.3 mL of 0.2 M phosphate buffer (pH 7.0), was incubated at $50 \,^{\circ}\text{C}$ for 15 min. Heated for 5 min in boiling water to inactivate CDA, the mixture was added ddH_2O up to 1 mL. The solution was centrifuged and CDA activity was determined by measuring amount of 4-nitroaniline released from 4-nitroacetanilide at $OD_{400 \text{ nm}}$. One unit of CDA is defined as activity that catalyze the release of 1 μg

^{*} Corresponding author. Tel.: +86 532 82898786; fax: +86 532 82898578. E-mail address: zhangjiquan@qdio.ac.cn (J. Zhang).

Table 1Range of different variables studied in PBD.

Variables	Names	Levels	
		-1	+1
X ₁ (g/L)	Glucose	8.00	12.00
X_2 (g/L)	Powder chitin	7.00	10.00
X_3 (g/L)	$(NH_4)_2SO_4$	20.00	30.00
X_4 (g/L)	Yeast extract	4.00	6.00
X_5 (g/L)	KH ₂ PO ₄	0.35	0.53
X_6 (g/L)	$K_2HPO_4\cdot 3H_2O$	3.00	4.50
X_7 (g/L)	NaCl	0.40	0.60
X_8 (g/L)	MgSO ₄ ·7H ₂ O	1.50	3.25
X_9	рH	7.0	8.0
X ₁₀ (°C)	Temperature	28	32
X_{11} (h)	Time	60	72
X ₁₂ (%)	Inoculums size	2.5	3.5
X_{13} (mL/250 mL)	Fermentation holding	35	50

of 4-nitroaniline per hour from 4-nitroacetanilide under standard assay conditions.

2.3. Experimental design and data analysis

2.3.1. Optimization of medium components and culture conditions using Plackett-Burman design (PBD)

Based on the result of optimization of medium components and culture conditions with one-factor-at-a-time method (data not shown), PBD was employed to evaluate the important factors affecting CDA production (Table 1). The statistical software package "Design Expert 8.05b" (Stat-Ease Inc., Minneapolis, USA) was used to generate and analyze experimental design (Desai, Akolkar, Badhe, Tambe, & Lele, 2006). Six dummy variables (X_{14} , X_{15} , X_{16} , X_{17} , X_{18} , and X_{19}) were designated. Concentration ranges for variables were decided by extensive literature survey. Response was determined by CDA activity.

2.3.2. Central composite design (CCD)

Response surface methodology (RSM) was used to determine optimum value of selected relevant variables for elevation of CDA production. A CCD was used to optimize variables and experimental design was formulated and analyzed by "Design Expert 8.05b". Response was determined by CDA activity.

2.4. Determination of the degree of deacetylation (DDA) of chitin

The DDA of chitin was measured by the acid hydrolysis-HPLC method (Ng, Hein, Chandrkrachang, & Stevens, 2006).

2.5. Analysis of hydrolysate components

Culture was centrifuged at $14,000 \times g$ for $30 \, \text{min}$ ($4 \, ^{\circ}\text{C}$). The supernatant was added into 5% colloidal chitin, stirred evenly, undertaken vibration reaction at $50 \, ^{\circ}\text{C}$ for $24 \, \text{h}$. The enzymatic product was centrifuged and qualitatively analyzed by thin layer chromatography (Choi, Kim, Piao, Yun, & Shin, 2004).

3. Results and discussion

3.1. Isolation, screening and identification of a CDA-producing strain

Among 23 isolated bacterial species, a strain with maximum extracellular CDA activity (58.00 U/mL) was selected for further studies. It also had a considerable level of chitinase activity. Based on morphological characteristics and 16S rDNA analysis (Accession

Table 2 Identification of significant variables for CDA production by *R. erythropolis* HG05 using PBD.

Source	Sum of squares	DF	Mean square	F-value	Prob > F
Model	10,510.21	13	808.48	17.99	0.0010a
X_1	2102.89	1	2102.89	46.79	0.0005^{a}
X_2	13.51	1	13.51	0.30	0.6032
X_3	45.30	1	45.30	1.01	0.3541
X_4	8.48	1	8.48	0.19	0.6793
X_5	39.03	1	39.03	0.87	0.3873
X_6	37.65	1	37.65	0.84	0.3954
X_7	3119.50	1	3119.50	69.41	0.0002^{a}
X_8	1255.80	1	1255.80	27.94	0.0019^{a}
X_9	60.55	1	60.55	1.35	0.2898
X_{10}	16.34	1	16.34	0.36	0.5686
X_{11}	5.81	1	5.81	0.13	0.7315
X_{12}	3701.38	1	3701.38	82.36	0.0001^{a}
X_{13}	103.97	1	103.97	2.31	0.1791
Residual	269.65	6	44.94		
Cor total	10,779.86	19			

a Significant at 1% level.

no.: KF439699), it was identified as *R. erythropolis* and named *R. erythropolis* HG05.

3.2. Plackett-Burman design

Thirteen-factor-twenty-run experiments were conducted and a significant variation in CDA production was observed (7.89–93.21 U/mL) that highlighted the importance of optimizing variables to attain higher enzyme activity. The regression analysis made it clear that glucose, NaCl, MgSO₄, and inoculums size had the most significant influence on CDA production (Table 2).

3.3. Response surface methodology

Thirty experiments were performed using Box-behnken design of RSM (Table 3). The results were analyzed by standard

Table 3 Experimental design matrix for optimization of CDA production.

Runs	X_1	<i>X</i> ₇	X ₈	X ₁₂	CDA activity (U/mL)	
					Observed	Predicted
1	10.00	0.6	4.13	3.50	84.00	87.64
2	9.00	0.5	2.38	3.00	83.32	90.18
3	9.00	0.5	0.63	3.00	143.32	135.84
4	8.00	0.4	1.50	2.50	82.56	82.28
5	8.00	0.6	1.50	2.50	98.28	99.73
6	8.00	0.4	3.25	3.50	85.13	82.27
7	9.00	0.5	4.13	3.00	93.85	98.14
8	10.00	0.4	1.50	3.50	105.13	104.60
9	9.00	0.5	2.38	3.00	104.42	109.59
10	11.00	0.5	2.38	3.00	90.99	87.64
11	9.00	0.5	2.38	3.00	84.85	80.44
12	9.00	0.5	2.38	2.00	96.71	97.86
13	8.00	0.6	3.25	2.50	90.28	87.64
14	9.00	0.5	2.38	3.00	83.42	87.64
15	8.00	0.4	3.25	2.50	77.43	86.81
16	10.00	0.4	3.25	3.50	89.42	87.64
17	9.00	0.5	2.38	4.00	85.99	82.91
18	9.00	0.5	2.38	3.00	101.85	108.14
19	10.00	0.6	1.50	2.50	93.71	95.75
20	10.00	0.5	1.50	2.50	88.56	87.70
21	10.00	0.6	1.50	3.50	69.99	70.03
22	8.00	0.6	1.50	3.50	102.28	99.33
23	10.00	0.6	3.25	2.50	84.28	81.33
24	9.00	0.7	2.38	3.00	77.71	80.27
25	7.00	0.5	2.38	3.00	92.42	86.67
26	8.00	0.6	3.25	3.50	91.13	92.29
27	9.00	0.3	2.38	3.00	120.99	119.54
28	8.00	0.4	1.50	3.50	103.71	100.63
29	10.00	0.4	3.25	2.50	95.13	99.24
30	9.00	0.5	2.38	3.00	120.85	121.41

Download English Version:

https://daneshyari.com/en/article/7793248

Download Persian Version:

https://daneshyari.com/article/7793248

<u>Daneshyari.com</u>