ARTICLE IN PRESS

Carbohydrate Research xxx (2014) xxx-xxx

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

Structural and genetic relationships of closely related O-antigens of *Cronobacter* spp. and *Escherichia coli*: *C. sakazakii* G2594 (serotype O4)/*E. coli* O103 and *C. malonaticus* G3864 (serotype O1)/*E. coli* O29

Alexander S. Shashkov^{a,†}, Min Wang^{b,c,†}, Eldar M. Turdymuratov^a, Shaohui Hu^{b,c}, Nikolay P. Arbatsky^a, Xi Guo^{b,c}, Lei Wang^{b,c,d}, Yuriy A. Knirel^{a,*}

^a N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation

^b TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China

^c Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China

^d Tianjin Biochip Corporation, TEDA, Tianjin 300457, China

ARTICLE INFO

Article history: Received 3 October 2014 Received in revised form 10 November 2014 Accepted 12 November 2014 Available online xxxx

Keywords: Cronobacter sakazakii Cronobacter malonaticus O-Specific polysaccharide Lipopolysaccharide Bacterial polysaccharide structure O-Antigen gene cluster

ABSTRACT

O-Antigen (O-polysaccharide) variation is the basis for bacterial serotyping and is important in bacterial virulence and niche adaptation. In this work, we present structural and genetic evidences for close relationships between the O-antigens of the *Cronobacter* spp. and *Escherichia coli*. *Cronobacter sakazakii* G2594 (serotype O4) and *Cronobacter malonaticus* G3864 (serotype O1) are structurally related to those of *E. coli* O103 and O29, respectively, and some other members of the Enterobacteriaceae family differing in the patterns of lateral glucosylation (*C. sakazakii* G2594) or O-acetylation (*C. malonaticus* G3864). The O-antigen gene clusters of the corresponding *Cronobacter* and *E. coli* strains contain the same genes with high-level similarity, and the structural differences within both O-antigen pairs were suggested to be due to modification genes carried by prophages.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cronobacter spp. are opportunistic food borne pathogens that can cause necrotizing enterocolitis, bacteraemia, and meningitis, predominantly in neonates.¹ Currently, the genus *Cronobacter* is comprised of seven species: *C. condiment, C. dublinensis, C. malonaticus, C. muytjensii, C. sakazakii, C. turicensis,* and *C. universalis.*^{2–6} Recently, it had been proposed to move three original *Enterobacter* species, *E. helveticus, E. pulveris,* and *E. turicensis,* respectively.⁷ However, later it was concluded that the three species constituted two new genera and proposed to reclassify them to *Franconibacter helveticus, Franconibacter pulveris,* and *Siccibacter turicensis,* respectively.⁸ *C. sakazakii, C. malonaticus,* and *C. turicensis* are the three species most often isolated from infantile cases.⁹

* Corresponding author. Tel.: +7 499 1376148; fax: +7 499 1355328. *E-mail address*: yknirel@gmail.com (Y.A. Knirel).

[†] These authors contributed equally.

http://dx.doi.org/10.1016/j.carres.2014.11.014 0008-6215/© 2014 Elsevier Ltd. All rights reserved. The O-antigen (O-polysaccharide) composed of a number of oligosaccharide repeats (O-units) is a highly variable part of the lipopolysaccharide in the outer membrane of Gram-negative bacteria. Each strain expresses a particular O-antigen form, which appears to be the major target of the host immune system and bacteriophages. O-Antigen variations are important in bacterial virulence and niche adaptation.¹⁰ By now, based on the O-antigens, 17 O-serogroups of *Cronobacter* spp. have been identified,^{11–14} including 7 for *C. sakazakii*, 3 for *C. turicensis*, 2 for each of *C. universalis*. For several representatives of the *Cronobacter* spp., chemical structures of the O-polysaccharides have been established (Refs. 15–21 and refs. cited in Refs. 15,17).

In this work, structures of the O-polysaccharides of *C. sakazakii* G2594 (serotype O4) and *C. malonaticus* G3864 (serotype O1) were elucidated and found to be appropriate to their O-antigen gene clusters. The *Cronobacter* structures established were found to be closely related to those of *Escherichia coli* O103 and O29, respectively, and evolutionary relationships between the two pairs of bacteria are discussed.

2

2. Results and discussion

2.1. Cronobacter sakazakii G2594 (serotype O4)

Structure of the O-polysaccharide: Lipopolysaccharide was obtained from cells of *C. sakazakii* G2594 by extraction with hot aqueous phenol and degraded with mild acid to give a high-molecular mass O-polysaccharide isolated by GPC on Sephadex G-50.

Full acid hydrolysis of the polysaccharide released Glc, GlcN, GalN, and 3-amino-3,6-dideoxygalactose (Fuc3N) in the ratios 3.3:1.8:1.0:0.7, which were identified using sugar and amino acid analyzers. GLC of the acetylated (*S*)-octyl glycosides showed that all sugars have the D configuration. In addition, 3-hydroxybutanoic acid (Hb) was released and its *R* configuration was established by GLC of the trifluoroacetylated (*S*)-octyl ester.

The ¹³C NMR spectrum of the polysaccharide (Fig. 1) contained signals for seven anomeric carbons at δ 98.3–103.8, four nitrogenbearing carbons (C-2 of GlcN and GalN and C-3 of Fuc3N) at δ 50.9– 56.0, one C–CH₂–C group (C-2 of Hb) at δ 46.1, five CH₃–C groups (C-6 of Fuc3N at δ 16.6; H-4 of Hb and three Me of NAc at δ 23.1–23.7), and four CO groups at δ 174.6–175.8. Attached-proton test revealed signals for six HOCH2-C groups, including four unsubstituted groups at δ 61.1–62.5 and two O-substituted groups at δ 66.3 and 69.3. The ¹H NMR spectrum of the polysaccharide contained signals for seven anomeric protons for three B-linked sugars at δ 4.54, 4.69 and 4.77 (all d, $J_{1,2}$ 7–8 Hz) and four α -linked sugars at δ 4.93, 5.12, 5.28 and 5.49 (d, $J_{1,2} \sim$ 3 Hz, or broadened singlet) (Fig. 2). There were also signals for one C-CH₂-C group (H-2 of Hb) at δ 2.45 and 2.51 and five CH₃-C groups at δ 1.24, 1.26 (H-6 of Fuc3N and H-4 of Hb; both d, J \sim 6 Hz), 2.04, 2.06, and 2.08 (Me of NAc; all s).

These data indicated that the polysaccharide had a heptasaccharide O-unit consisting of one residue each of D-GalN and D-Fuc3N, two residues of D-GlcN, and three residues of D-Glc as well as three *N*-acetyl groups and one (R)-3-hydroxybutanoyl group.

The ¹H and ¹³C NMR spectra of the polysaccharide were assigned using 2D ¹H,¹H COSY, TOCSY, ROESY, ¹H,¹³C HSQC, and HSQC-TOCSY experiments, and spin-systems for seven sugar residues and a 3-hydroxybutanoyl group were identified. The coupling constants determined from the 1D and 2D spectra showed that (i) all monosaccharides were in the pyranose form; (ii) Fuc3N, one of the GlcN residues (GlcN¹), and one of the Glc residues (Glc¹) were

Figure 2. Part of a 2D ROESY spectrum of the O-polysaccharide from *C. sakazakii* G2594. The corresponding parts of the ¹H NMR spectrum are shown along the axes. Numbers refer to protons in sugar residues denoted as indicated in the legend to Figure 1.

β-linked; and (iii) GalN, the second GlcN residue (GlcN^{II}), and two other Glc residues (Glc^{II} and Glc^{III}) were α-linked. The configurations of the glycosidic linkages were confirmed by interresidue H-1,H-2 correlations for α-linked monosaccharides and H-1,H-3 and H-1,H-5 correlations for β-linked monosaccharides, which were observed in the 2D ROESY spectrum of the polysaccharide (Fig. 2).

Low-field positions of the signals for C-2 of Fuc3N, C-4 of GalN, C-6 of GlcN^{II}, C-2 and C-4 of Glc^I, C-3 and C-6 of GlcN^I, as compared with their positions in the corresponding non-substituted mono-saccharides,^{22,23} revealed the substitution pattern in the O-unit. In accordance with the presence of two branched points (Glc^I and GlcN^I), Glc^{II} and Glc^{III} were located at the terminal position of the side chains as followed from the similarity of their C-2–C-6 chemical shifts to those of α -glucopyranose.²²

Figure 1. ¹³C NMR spectrum of the O-polysaccharide from *C. sakazakii* G2594. Numbers refer to carbons in sugar residues denoted as follows: GI, β -Glc^I; GII, α -Glc^{II}; GNI, GlcN^{II}; GNI, GlcN^{II}; GAII, GLCN^I

Please cite this article in press as: Shashkov, A. S.; et al. Carbohydr. Res. (2014), http://dx.doi.org/10.1016/j.carres.2014.11.014

Download English Version:

https://daneshyari.com/en/article/7794180

Download Persian Version:

https://daneshyari.com/article/7794180

Daneshyari.com