Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Recent progress in potential anti-hepatitis B virus agents: Structural and pharmacological perspectives

쮔

Dejuan Sun ^{a, 1}, Lingjuan Zhu ^{a, 1}, Dahong Yao ^a, Lixia Chen ^{a, *}, Leilei Fu ^{b, **}, Liang Ouyang ^c

^a Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China

^b School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China

^c State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China

ARTICLE INFO

Article history: Received 26 June 2017 Received in revised form 29 January 2018 Accepted 1 February 2018 Available online 5 February 2018

Keywords: Hepatitis B virus Nucleos(t)ide analogs Inhibitors Mechanisms of action

ABSTRACT

Hepatitis B virus (HBV) infections affect about 240 million patients worldwide and increase the risk of liver cirrhosis and hepatocellular carcinoma. It is estimated that about 686 thousand people died annually of liver damage resulted from HBV infections. At present, two classes of antiviral drugs have been approved by the Food and Drug Administration (FDA) for the treatment of hepatitis B, immuno-modulators (interferon [IFN]-a and pegylated-interferon [PEG-IFN]-a) and nucleos(t)ide analogs (lam-ivudine, telbivudine, adefovir, tenofovir [TDF], and entecavir [ETV]). However, it still remains a daunting challenge for curing HBV, because of the low sustained response rates (20–30%) and many side effects of IFN and peg-IFN. Although nucleoside analogues are well tolerated and exhibit an early and potent antiviral effect, the selection of resistant mutants and nephrotoxicity during long-term therapy limit their use. Here, we focus on summarizing the currently approved *anti*-HBV drugs and characterization of novel HBV inhibitors and analysing their structures, targets, *anti*-HBV effects and mechanisms of action, which may shed new light on the discovery of small compounds as potential *anti*-HBV drugs for treatment of HBV.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Hepatitis B virus (HBV), the most well-known member of the Hepadnaviridae family, is a small, circular, enveloped, and partially double-stranded DNA virus harboring only four overlapping reading frames that encode for precore/core, polymerase, envelop and X proteins [1,2]. Chronic HBV reinfection remains a common public health issue worldwidely, which is strongly associated with hepatitis, cirrhosis, and hepatocellular carcinomas [3,4]. Indeed, approximately 240 million people around the world are chronically infected and it contributes to 686,000 deaths annually [5,6].

At present, there are several nucleos(t)ide analogues that have been approved by the Food and Drug Administration (FDA) for the treatment of hepatitis B, including lamivudine, telbivudine, adefovir, tenofovir, and entecavir [4]. A major limitation of nucleos(t)ide analogues treatments for HBV infection is the rapid development of resistant variants. The emerging of a reversal of viral suppression and histological improvement will exacerbate HBV-related diseases [7]. Both lamivudine and telbivudine belong to L-nucleosides, resulting in chain termination and prevention of viral replication. Entecavir's mechanism is that it inhibits three functions of the HBV DNA polymerase: promoting the HBV DNA polymerase, synthesizing the positive strand HBV DNA and reversing transcription of the negative strand [8,9]. Viral mutations limit the use of currently approved *anti*-HBV drugs [10,11]. Thus, it is of great interest to discover *anti*-HBV agents which are effective against drug-resistant HBV mutants.

Considering the extensive pathways of HBV, in this review, we

** Corresponding author.

¹ These authors contributed equally.

https://doi.org/10.1016/j.ejmech.2018.02.001 0223-5234/© 2018 Elsevier Masson SAS. All rights reserved.

^{*} Corresponding author.

E-mail addresses: syzyclx@163.com (L. Chen), leilei_fu@163.com (L. Fu).

Table 1Potential agents for chronic hepatitis B therapy.

NO.	Compound name	Mechanisms	Experimental model	Clinical trial	Reference
1	Cyclosporin A	Inhibiting HBV entry by targeting a specific binding	HepG2 cells	-	[48]
2	SCY446	receptor (NTCP) Inhibiting HBV entry by targeting a specific binding	HepG2 cells	-	[48]
3	SCY450	receptor (NTCP) Inhibiting HBV entry by targeting a specific binding	HepG2 cells	_	[48]
1	SCYX618806	receptor (NTCP) Inhibiting HBV entry by targeting a specific binding	HepaRG, HepAD38, PHHs cells	-	[51]
5	SCYX1774198	receptor (NTCP) Inhibiting HBV entry by targeting a specific binding	HepaRG, HepAD38, PHHs cells	_	[51]
5	SCYX827830	receptor (NTCP) Inhibiting HBV entry by targeting a specific binding	HepaRG, HepAD38, PHHs cells	_	[51]
7	SCYX1454139	receptor (NTCP) Inhibiting HBV entry by targeting a specific binding	HepaRG, HepAD38, PHHs cells	_	[51]
3	Ezetimibe	receptor (NTCP) Inhibiting HBV entry by targeting a specific binding	Huh7 cells	_	[43,44]
)	NTI007	receptor (NTCP) Inhibiting HBV entry by targeting a specific binding	HepG2.2.15 cells	_	[52]
	Vanitaracin A	receptor (NTCP) Inhibiting HBV entry by targeting a specific binding	HepG2-hNTCP-C4, Hep38.7-Tet, Huh-	_	[53]
		receptor (NTCP) Inhibiting HBV entry by targeting a specific binding	7.5.1 cells		
	Azelastine hydrochloride (N4)	receptor (NTCP)	HepG2.2.15 cells	_	[54]
2	Irbesartan	Inhibiting HBV entry by targeting a specific binding receptor (NTCP)	HepG2 cells	-	[55]
3	Epigallocatechin-3-gallate (EGCG)	Inhibiting HBV entry by targeting a specific binding receptor (NTCP)	HepG2.2.15 cells	-	[56]
4	Ginkgolic acid (13:0)	Inhibiting HBV entry by targeting a specific binding receptor (NTCP)	HepG2.2.15 cells	-	[57]
5	Ginkgolic acid (15:1)	Inhibiting HBV entry by targeting a specific binding receptor (NTCP)	HepG2.2.15 cells	-	[57]
6	OHBF-C	Inhibiting HBV entry by targeting a specific binding receptor (NTCP)	HepG2 cells	-	[55]
7	Ritonavir	Inhibiting HBV entry by targeting a specific binding	HepG2.2.15 cells	-	[58]
8	Myrcludex-B	receptor (NTCP) Inhibiting HBV entry by targeting a specific binding receptor (NTCP)	HepG2.2.15 or HepAd38 cells	phase IIa	[40]
9	Bay41-4109	Blocking the normal formation of nucleocapsids	HBV-transgenic mice	-	[61,62]
	Bay 38-7690	Blocking the normal formation of nucleocapsids	HBV-transgenic mice	-	[61,62]
1	5	Blocking the normal formation of nucleocapsids	HBV-transgenic mice	-	[61,62]
	SBA-R01	Blocking the normal formation of nucleocapsids	HepG2.2.15 cells	-	[67]
3	BA-26019	Blocking the normal formation of nucleocapsids	HepG2, AML12 cells	-	[68]
4	BA-38017	Blocking the normal formation of nucleocapsids	HepG2, AML12 cells	-	[68]
5	JNJ-632	Blocking the normal formation of nucleocapsids	HepG2.2.15 cells	_	[69]
	HAP18	Blocking the normal formation of nucleocapsids	Escherichia coli cells	-	[70]
7	HAP1	Blocking the normal formation of nucleocapsids	Escherichia coli cells	_	[70]
3	34a	Blocking the normal formation of nucleocapsids	HepDE19 cells	_	[71]
				_	
	GLS4 Pyridazinone Derivative	Blocking the normal formation of nucleocapsids Blocking the normal formation of nucleocapsids	HepAD38, HepG2.2.15 cells HepG2.2.15, Huh7 cells	-	[72—75] [76]
1	compound 3711 AT-61	Preventing the encapsidation of viral pregenomic RNA into	HepG2 cells	-	[64–66]
2	AT-130	nucleocapsid Preventing the encapsidation of viral pregenomic RNA into	HepG2 cells	_	[64–66]
3	TAF	nucleocapsid Inhibiting potent polymerase	HepG2.2.15 cells	Approved	[78-84]
	LB80380	Inhibiting potent polymerase	HepG2.2.15 cells	approved in South Korea	. ,
5	Clevudine	Inhibiting potent polymerase	HepG2.2.15 cells		[86]
	B-L-Hyd4C		HepG2.2.15 cells	_	
		Inhibiting potent polymerase			[87]
	B-L-MetCdR CCC0975	Inhibiting potent polymerase Inhibiting relax-circular DNA to cccDNA conversion	HepG2.2.15 cells HepG2.2.15, HepDE19,	_	[87] [91]
9	CCC0346	Inhibiting relax-circular DNA to cccDNA conversion	HepDES19 cells HepG2.2.15, HepDE19,	_	[91]
			HepDES19 cells		
0	FIT039	Reduce cccDNA	HepG2.2.15, Hep38.7-Tet cells	-	[92]
1	Punicalagin	Preventing cccDNA format and promot cccDNA decay	HepG2.2.15, HepG2.117, HepDES19 cells	-	[93]
2	Punicalin	Preventing cccDNA format and promot cccDNA decay	HepDE319 cells HepDE2.2.15, HepG2.117, HepDES19 cells	-	[93]
3	Geraniin	Preventing cccDNA format and promot cccDNA decay	HepDES19 cells HepDES19 cells	-	[93]
Δ	MH	Inhibiting cccDNA format	HepG2.2.15 cells	_	[95]
		Inhibiting HBV DNA, RNA and protein expression	HepG2.2.15 cells	_	[95]
			HEDG2.2.13 (EIIS		90
5	Helioxanthin		-		1071
5	Helioxanthin Helioxanthin analogue Sulfonamide derivative I	Inhibiting HBV DNA, RNA and protein expression Site-specific cleavage of DNA	HepG2.2.15 cells HepG2.2.15 cells	-	[97] [98]

Download English Version:

https://daneshyari.com/en/article/7796741

Download Persian Version:

https://daneshyari.com/article/7796741

Daneshyari.com