
Development of an LEFM dynamic crack criterion for correlated size and rate
effects in concrete beams

Jong Yil Park a,*, Theodor Krauthammer b

a Agency for Defense Development, Yuseong P.O. Box 35, Daejon 305-600, South Korea
b Center for Infrastructure Protection and Physical Security (CIPPS), University of Florida, 365 Weil Hall, P.O. Box 116580, Gainesville, FL 32611-6580, USA

a r t i c l e i n f o

Article history:
Received 14 September 2006
Received in revised form 20 February 2008
Accepted 10 April 2008
Available online 8 May 2008

Keywords:
Size effect
Rate effect
Concrete
LEFM
Fracture mechanics

a b s t r a c t

The strength of concrete under severe dynamic loading depends on the specimen size and the loading
rate. Although the size effect, under quasi-static loading, has been explained by the size-dependent strain
energy rate, the main causes of the size and rate effects for dynamic loading cases have not been clarified.
In this study, a linear elastic fracture mechanics (LEFM) dynamic crack criterion for a notched three-point
bend specimen is developed to explain the size and rate effects, and the possible correlation of these
effects. This was achieved by using energy balance, force equilibrium, and Griffith’s crack model. From
the proposed LEFM dynamic crack criterion, it was shown that (1) the kinetic energy rate seems to be the
main cause of the rate effect, (2) the size and rate effects are not independent phenomena.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that, under quasi-static loadings, the strain
energy rate in concrete specimens increases with the increase of
the structural size, which induces a size effect [1–3]. However, this
quasi-static form of the size-dependent strain energy rate cannot
be adopted for describing the size and rate effects under dynamic
loading, where kinetic energy should be considered. Since it is
difficult to calculate strain and kinetic energies in dynamic fracture
mechanics due to the presence of discontinuities, such as cracks
and flaws, empirical equations that express the strength enhance-
ment by loading or strain rate were used to represent the rate effect
[4–9]. However, since an empirical approach cannot provide an
objective solution, an effort should be made to establish energy
based dynamic crack criterion by employing fracture mechanics.

Shah and John [10] conducted Charpy impact tests on single edge
notched beams with a resistive type of thin foil gage called KRAK
gage, which can measure the propagation of a single continuous
surface crack, and reported that the amount of pre-peak crack
growth decreases with the increase in loading rate. The decrease in
pre-peak crack growth at high strain rates indicated that the fracture
process zone decreased, as the loading rate increased. Similar ob-
servations were made by other investigators [11,12] based on the
measurements of load–deflection curves of beams, and of stress–

strain curves in compressive specimens, respectively. The negligible
pre-peak crack growth at high loading rate indicates that the crack
starts to propagate at the peak load. Hence, LEFM could be valid for
studying size and rate effects of concrete in high loading rate cases.

In LEFM, the rate effect can be explained by the delay of crack
propagation, which may be caused by the kinetic energy term in
a dynamic crack criterion. If the kinetic energy rate term is pre-
ceded by a negative sign, additional strain energy rate is required to
reach the critical energy rate in the dynamic crack criterion. This
additional strain energy rate may explain the rate effect in concrete
under high loading rates.

In the present study, an LEFM dynamic crack criterion for
a notched three-point bend specimen was developed by hypothe-
sizing that the rate effect may originate from the kinetic energy
term with a negative sign in a dynamic crack criterion. The pro-
posed LEFM dynamic crack criterion will provide the physical ex-
planation of how the loading rate and the structural geometry are
coupled to form both the size and rate effects, and give reliable
structural analysis results at high loading rates.

2. Review of the single degree of freedom model

Closed form solutions of continuous structural behavior under
dynamic loading should be derived to develop a dynamic crack
criterion. However, it is difficult to formulate closed form solutions
due to the presence of cracks. Thus, a simplification of the mathe-
matical governing equations of motion is inevitable. One simplified
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method is the single degree of freedom approach (SDOF), in which
the mass and stiffness are formulated to have the same energy
distribution as in the continuous closed form solution. It may give
a general idea of the relationships for the strain and kinetic energy
rates, and their possible contributions to the size and rate effects,
although the SDOF model can express only a first mode of dynamic
structural behavior.

Kishimoto’s closed form solution [13] was adopted for the first
mode. This approach was derived for the normal modes of deflection
and bending slope of a notched Timoshenko beam (shown in Fig. 1)
subjected to an arbitrary dynamic concentrated load by assuming
that the crack affects only the area moment of inertia of the cracked
section. In Fig. 1, P is the applied force, B is the beam width, W is the
beam depth, L is the span length, and a is the crack or notch length.

By assuming that the first mode may govern the dynamic be-
havior of a single notched beam, the continuous Timoshenko beam
problem can be reduced to an SDOF model with the following
equivalent mass and stiffness for plane strain condition:
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where Y and 4 are the first mode deflected shape and slope, re-
spectively, in Kishimoto’s solution [13], r is the mass density, I is the
area moment of inertia, and E is the modulus of elasticity. Also,
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and J is the following shape function [14]:
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where n is Poisson’s ratio, and l is the ratio given by a/W.
It should be noted that the equivalent mass and stiffness are

functions of the crack length a, because the mode shapes (Y and 4)
and J depend on the crack length.

3. Development of the LEFM dynamic crack criterion

An LEFM dynamic crack criterion for an SDOF system can be
derived by applying the energy balance and force equilibrium
equations. For the energy balance, the work rate should be equal
to the sum of the rates of strain, kinetic and surface energies, as
shown in Eq. (6), in which the surface energy is the required
energy to propagated unit crack area based on Griffith’s crack
model.

_Ue ¼ _Us þ _Uk þ 2gsB _a (6)

in which upper dots represent time derivatives, and gs is the surface
energy. Ue, Us, and Uk are the work, strain, and kinetic energies,
respectively. For an SDOF model, rates of these energies can be
described by the following expressions:
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in which u is the deflection in an SDOF model, and P is the applied
force.

In addition to the energy balance equation, the following force
equilibrium also must be satisfied:

d
dt

	
Me _u



þ Keu ¼ P (10)

which yields the following expression:

Me€uþ dMe
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_a _uþ Keu ¼ P (11)
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Fig. 1. Three-point bending of a single notched beam.

Notation

a crack or notch length
B beam width
DF dynamic factor
DIF dynamic increase factor
E modulus of elasticity
I area moment of inertia
L span length
P applied force
Pc critical bending load
u deflection in an SDOF model

Ue work
Uk kinetic energy
Us strain energy
W beam depth
Y first mode shape
4 first mode slope
3 strain at the bottom of the mid-span
r mass density
l a/W
J shape function
n Poisson’s ratio
gs surface energy
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