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a b s t r a c t

Compared to the theory of elasticity solutions the strength of material solutions offer closed form
solutions that is favoured by practising engineers for performing design analysis. However, the existing
strength of material solutions for a sandwich structure experiencing differential thermal strains have
principally ignored the free edge conditions; and for the very limited publications that have enforced the
free edge conditions, the solutions have been inaccurate. Understandably, design analysis using such
solutions is unreliable. This manuscript describe a solution technique that enforces the nil shear stress
condition at the free edge using a high power exponential function resulting in a simple yet accurate
closed form solutions for the interfacial shear stress. The interfacial peeling stress is made up of two
components: the mean and the amplitude of variations of the transverse normal stress in the bonding
layer; the latter is the dominant component whose magnitude is linearly proportional to the gradient of
the interfacial shear stress. Following validation by finite element analysis, design analysis for debonding,
fracturing, and out-of-plane deformation are performed using the concise closed form solutions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many engineering structures and assemblies, ranging from
composites structures used in aircrafts to microelectronic/optoe-
lectronic assemblies are made of sandwiched construction. A
sandwiched structure is made of two adherends that are bonded
with a bonding layer. Thermal stresses in a multi-layer structure
has been a subject of great interest. The earliest analysis could be
traced to Stoney [1] who analysed the in-plane stress on a film
deposited on a substrate. Timoshenko [2] was interested in the
out-of-plane deformation of two dissimilar metals used as ther-
mostat. The analysis of interfacial thermal stresses in multilayer
structures is far more challenging and has been a subject of
intense study. Aleck [3] is believed to have been the first to
investigate the interfacial thermal stresses in a bi-material struc-
ture – a film bonded to a rigid substrate. Since then, the analyses
have taken two separate paths: the theory-of-elasticity approach,
and the strength-of-material approach. The former describes the
stress field using stress functions, which for a two-dimensional
body are most frequently the Airy stress functions. This returns
rigorous and well-substantiated solutions including describing the
singular stress field at the free edge of interfaces [4–6]; however,
the solutions are usually too complicated to be presented in the

form of closed-form solution and almost inadvertently requires
the use of numerical techniques for its solutions [7–21]. The
strength-of-material approach breaks down the constituting
bodies into structural elements that are prescribed with assumed
displacement behaviour. The assumptions have simplified sig-
nificantly the analysis and could lead to closed-form solutions
[22–39]. Among these works, Taylor and Yuan [22] is believed to
be the first to present the interfacial shear stress in the closed-
form solution of exponential or hyperbolic function while Suhir
[26] is credited for pioneering the compliance technique.

The problem of thermal stress has been particularly troubling
the microelectronics and optoelectronics assembly communities
because of the rapid pace at which new designs of these assem-
blies and new materials are introduced. Compared to the aero-
space industry, the microelectronics and optoelectronics industry
also enjoy much more design flexibility. As a consequence, design
engineers are expected to explore vast design space within a
relative short development process. Comparing to numerical
analysis such as the finite element analysis, the complex solutions
from theory-of-elasticity offers little advantages. On the other
hand, the simple closed formed solutions from strength-of-
material offers valuable physical insights and is particularly
attractive for design explorations. It is no coincidence that the bulk
of the strength-of-material solutions listed above have originated
from the microelectronic/optoelectronic communities.

However, a major setback for the strength-of-material solutions
is their inability to model accurately the magnitude of the stresses
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at where it is most critical – the free edge of the assembly. In
contrast to the assumed uniform transverse stress along the
thickness of the bonding layer, the theory of elasticity suggests
that the transverse stress in a highly compliant bonding layer is
made up of a uniform component and a linear component, with
the magnitude of the latter significantly larger than the former
except for severely asymmetric sandwich structures [40]. The
magnitude of the linear component is directly proportional to the
gradient of the interfacial shear stress; it is therefore essential that
the interfacial shear stress is accurately modelled at and near the
free edge where it acquires the highest magnitude of gradient. This
calls for the enforcement of nil-shear-stress condition at the free
edge. However, the bulk of the strength-of-material solutions did
not enforce the nil shear stress condition at the free edge leading
to an over estimation of the maximum magnitude of shear stress
in the assembly while grossly underestimating the magnitude of
the peeling stress at the free edge of the assembly. Under-
standably, it is unreliable to use these closed-form solutions for
design analysis.

Suhir [28] and Ru [36] have tried to enforce the “nil shear
stress” condition in a bi-material structure experiencing mis-
matched thermal expansion. Modelling the shear and stretch
responses between the centroid axes of the two material as dis-
tribution of infinitesimal springs of first order Winkler model,
Suhir [28] arrived at a sixth-order differential equation for the
interfacial shear stress. Following the approach of Suhir but
modelling the shear compliance between the centroid axes using a
higher order Winkler model while assuming absolute stiffness in
stretching, Ru [36] obtained a fourth-order differential equation

for the interfacial shear stress. The condition of nil interfacial shear
stress at the free edge of the structure was enforced as one of the
three and two anti-symmetric boundary conditions, respectively.
Unfortunately, both solutions have failed to model the expected
singular nature of the interfacial peeling stress at the free edge of
the bi-material structure.

In this manuscript, the interfacial shear stress in symmetric or
mildly asymmetric sandwich structures due to differential thermal
expansion and/or differential free-edge stretching is modelled
using a second order differential equation and the nil stress con-
dition at the free edge is enforced using a high power exponential
function leading to concise yet accurate closed-form solutions; the
interfacial peeling stress is modelled as the sum of a mean and an
amplitude of variation of the transverse normal stress in the
bonding layer, the latter is linearly proportional to the gradient of
the interfacial shear stress. Following validation with the finite
element analysis of these concise solutions, robust design analysis
for debonding, fracturing, and out-of-plane deformation of sand-
wich structures are then performed.

2. The fundamental equations

Fig. 1 shows the elemental representations of a sandwich
structure, wherein the structural members #1 and #2 are mod-
elled as beam elements that have advanced descriptions for shear
compliance. The bonding layer, member #3, is modelled as a two-
dimensional elastic body that has negligible stiffness in the x-
direction. The assumption leads to a constant distribution of shear

Nomenclatures

Subscript #i Subscript #1 & #2 are outer members and #3 is a
bonding layer.

Di, Ei, Gi, hi Flexural rigidity, elastic modulus, shear modulus,
thickness of member #i.

Di;De Flexural compliance of member #i, effective flexural
compliance of the sandwich structure.

fp, fa, fb Interfacial peeling stress, mean, amplitude of the
interfacial peeling stress.

fs Interfacial shear stress.
Fi x-directional sectional traction acting along the cen-

troid axis of member #i.
L Half length of the sandwich structure.
Qa, Qb Sectional shear forces corresponding to fa and fb,

respectively.
ui, wi x-directional, z-directional displacement of the cen-

troid axis of member #i.
αz, β Characteristic constants for through-thickness dis-

placement, shear deformation of the sandwich
structure.

αi; αij Coefficient of thermal expansion; αji ¼ αj - αi.
κsi, κs Shear compliances of member #i, of the sandwich

structure between the centroid axes of members #1
and #2.

λxi, λxθ, λx x-direction stretch compliances of member #i, of
contribution due to the bending rotation of members,
of the sandwich structure.

λzi, λz Through-thickness compliances of member #i, of the
sandwich structure.

μ, μ* Parameters that describe the differential bending
compliances of members #2 and #1.

θi Rotation of the centroid axis of member #i due to
bending.

ϕ3,φi Rotation of member #3, average rotation of the cross-
section of member #i w.r.t to their respective centroid
axis due to shearing.

ΔT Temperature change.

Mathematical symbols

αz
4 ¼ De

4λz

β2 ¼ λx
κs

Cs ¼ μ�α21ΔT

λzκs 4α4
z þβ4

� �
Di ¼ Eihi

3

12

Di ¼ 1
Di

De ¼D1þD2

μ ¼ 1
2

h2
D2
� h1

D1

� �
μ� ¼ 1

2
h2 þh3

D2
�h1 þh3

D1

� �
κs ¼ κs1þκs2þκs3
κsi � hi

8Gi

κs3 ¼ h3
G3

λx ¼ λx1þλx2þλxθ
λxi � 1

Eihi

λxθ ¼ 1
4

h1
2 þh1h3
D1

þh2
2 þh2h3
D2

� �
λz ¼ λz1þλz2þλ3
λzi � 3hi

8Ei

λz3 ¼ h3
E3

Note: The above formulae involving Ei are for plane
stress; substitutes Ei with Ei'¼ Ei= 1�νi2

� �
for plane

strain and Ei'¼ Ei= 1�νið Þ for spherical bending.
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