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a b s t r a c t

A comprehensive method is proposed to predict the dynamic behaviors of flat plate of arbitrary boundary
conditions subjected to moving loads, based on Kirchhoff plate theory. The governing equations of
motion are derived using the Lagrange equation. Rayleigh–Ritz method is employed and extended to
treat the spatial partial derivatives. Different with conventional Rayleigh–Ritz solutions, the admissible
functions adopted here integrate the advantages of both polynomials and trigonometric functions, which
just satisfy a totally unconstrained condition, and Courant's penalty method is used to handle constraints.
Differential quadrature method is used for discretization of temporal derivatives. The results show that
the presented method is very reliable and efficient, and its convergence and accuracy are also better
compared to finite element method. Moreover, the method is good for dealing with the boundary
conditions due to employing suitable admissible functions. To illustrate this, the method presented
evaluates the dynamic response of a plate example, whose three edges are usual constrains, and the
fourth edge connects to a real spring with arbitrary length and stiffness value.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic behaviors of flat plate under moving external loads
are essential problems in structural dynamic field, which are
commonly countered in engineering, such as bridges and roads,
space vehicles, submarines and mechanical engineering. So many
research works for this aspect have been conducted in past dec-
ades. Ouyang [1] has summarized a variety of engineering pro-
blems which are associated with the dynamics of structures under
moving loads. Fryba [2] performed one of the first and most im-
portant studies on the moving load problem with several analy-
tical solution methods. Here, a concise review of research studies
related with dynamic problem of plate subjected to moving loads
is carried out in the following section.

The governing equation of motion for the vibration problem of
plate subjected to moving loads is partial differential equation. Hence,
eigenfunction and integral scheme are commonly employed to treat
the special and temporal derivatives, respectively. Gbadeyan et al. [3]
presented a versatile solution technique based on modified general-
ized finite integral transforms and the modified Struble's method.
Takabataka [4] considered the discontinuous variation of bending

stiffness and mass of the plate with variation of the thickness using a
characteristic function and presented an analytical method for rec-
tangular plates under moving loads. Huang et al. [5] developed a
procedure incorporating the finite strip method to treat the response
of rectangular plate on elastic foundation subjected to a moving point
loads. Shadnam et al. [6] presented a method to treat the response of
rectangular plate under moving mass and force by transforming the
governing equation into a series of eigenfunctions. Ghazvini et al. [7]
introduced a robust computational approach to perform the trans-
verse vibration of a thin rectangular plate of varying thickness under a
traveling mass using eigenfunction expansion method. Nikkhoo et al.
[8] proposed a semi-analytical model to study the response of a thin
rectangular plate subjected to series of moving inertial loads by using
eigenfunction expansion method. Gbadeyan et al. [9] investigated the
elastodynamic response of a rectangular Mindlin plate subjected to a
distributed moving mass by using a finite difference algorithm to
transform the differential equation into a set of linear algebraic
equations. Amiri et al. [10], based on first-order shear deformation
plate theory, studied the response of a Mindlin elastic plate under a
moving mass by using direct separation of variable and eigenfunction
expansion method. Eftekhari et al. [11] presented a combined appli-
cation of Ritz method, differential quadrature method and integral
quadrature method to conduct the vibration response of rectangular
plate subjected to accelerated traveling masses. In this paper, the Ritz
method with beam eigenfunctions is used to discretize the spatial
partial derivatives, and the differential quadrature method and
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integral quadrature method are employed to analogize the resultant
system of partial differential equations, then the Newmark time in-
tegration scheme is used to solve the ordinary differential equations.

Finite element method, which is one of the most versatile meth-
ods to solve the spatial problem, is often applied in the vibration
problem of plate under moving loads. Wu [12] investigated vibration
of a rectangular plate under moving force along a circular path using
finite element method associated with equivalent forces (and mo-
ments). Wu [13,14] presented a moving (distributed) mass element to
perform the dynamic analysis of an inclined plate under moving
(distributed) loads using finite element method. Esen [15] presented
an equivalent finite element to analyze the transverse vibration of the
plate under a moving point mass.

This paper presents a comprehensive method to treat the dynamic
problem of thin plate with arbitrary boundary conditions subjected to
moving loads (force and mass) based on thin plate theory. The gov-
erning equations of motion are derived using the Lagrange equation.
The updated Rayleigh–Ritz method associated with Courant's penalty
method is employed to deal with the spatial partial derivatives. The
admissible functions adopted here just satisfy a totally unconstrained
condition. Then the differential quadrature method is used for dis-
cretization of temporal derivatives.

2. Dynamic model of flat plate with moving loads

As shown in Fig. 1, a flat plate of length L, width W and thickness
h, supporting a mass M traveling at a velocity vM, is the physical
system analyzed here. Without loss of generality, it is assumed that
the moving path of the mass is parallel to the o-x axis, that is, the
locations of mass can be written as (xM, yM), where xM¼vMt,
yM¼constant, as shown in Fig. 1. In this study it is assumed that
deflections are small, and the Kirchhoff plate theory provided by [16]
is valid. Accordingly, in the case that the system is an isotropic plate
and there is no damping in the plate and loading system, the differ-
ential equation of the motion of the plate is [2,16]:
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where D¼Eh3/[12(1�μ2)] is the flexural rigidity and E, μ and ρ are
Young's modulus of elasticity, Poisson's ratio and density of plate,
respectively. F(x,y,t) is moving load. w is lateral deflection of plate.

In order to deal with arbitrary boundary conditions of plate, here
the Rayleigh–Ritz solutions are directly applied into both the energy
terms of deflections of plate and the energy terms due to boundary
conditions, and then the Lagrange equation is employed to obtain the
governing equation of motion of plate including boundary conditions.
Therefore, the Lagrange of the present problem is firstly deduced as

follows. To exactly describe the motion of the plate, three displace-
ment components, namely w, u, and v, which represent the dis-
placement along o-z axis, o-x axis and o-y axis, respectively, are ne-
cessary. Based on the Kirchhoff plate theory, the horizontal and ver-
tical displacements of the plate are expressed as

( ) = ( ) − ( )

( ) = ( ) − ( )

( ) = ( ) ( )

u x y z t u x y t zw x y t

v x y z t v x y t zw x y t

w x y z t w x y t

, , , , , , ,

, , , , , , ,

, , , , , 2

x

y

0 0,

0 0,

0

where u0, v0 and w0 are the horizontal and vertical displacements of
the plate in the middle plane (x–y plane), and ( � ),x and ( � ),y represent
the partial differentiations with respect to x and y, respectively. The
stain–displacement relationships are expressed as
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where εx, εy are normal strain, and εxy is shear strain. ( � ),xx, ( � ),yy,
( � ),xy represent the second-order partial derivatives with respect to x
and y, respectively. The corresponding constitutive relations are
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where sx, sy are normal stress, and sxy is shear stress. μ and E re-
present Poisson ratio and elasticity modulus of plate.

Therefore, the strain energy (V) and kinetic energy (T) of the
plate are

∫ ∫ ( )σ ε σ ε σ ε= + + ( )V dxdy
1
2

2 5x x xy xy y y

L W

0 0

∫ ∫ ( )ρ= ̇ + ̇ + ̇
( )T h w u v dxdy

1
2 6

L W

0 0

2 2 2

Substituting Eqs. (2)–(4) in Eqs. (5) and (6) leads to:
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Additionally, the work due to the weight and inertia of the
moving mass, which is expressed as

∫ ∫
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where δ(.) denotes the Dirac delta-function. When the effect of
inertia of the moving load is neglected, the problem is referred to a
moving force problem, and otherwise is referred to a moving mass
problem.

Based on previous analysis, the Lagrangian of the present
problem is

= − − ( )L T V W 10

3. Rayleigh–Ritz analyses

From Eqs. (7)–(9), it can be seen that only three unknown
parameters are needed to obtain the total energy of system,Fig. 1. Moving loads traveling on the plate with arbitrary trajectory.
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