FISEVIER

Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Research paper

Discovery and optimisation studies of antimalarial phenotypic hits

Alka Mital ^a, Dinakaran Murugesan ^a, Marcel Kaiser ^{b, c}, Clive Yeates ^d, Ian H. Gilbert ^{a, *}

- a Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee DD1 5EH, UK
- ^b Swiss Tropical and Public Health Institute, Postfach, Socinstrasse 57, 4002 Basel, Switzerland
- ^c University Basel, Petersplatz 1, 4003 Basel, Switzerland
- d InPharma Consultancy, Herts, UK

ARTICLE INFO

Article history:
Received 21 May 2015
Received in revised form
17 August 2015
Accepted 23 August 2015
Available online 9 September 2015

Keywords: Plasmodium falciparum Malaria Medicinal chemistry Phenotypic hit

ABSTRACT

There is an urgent need for the development of new antimalarial compounds. As a result of a phenotypic screen, several compounds with potent activity against the parasite *Plasmodium falciparum* were identified. Characterization of these compounds is discussed, along with approaches to optimise the physicochemical properties. The *in vitro* antimalarial activity of these compounds against *P. falciparum* K1 had EC_{50} values in the range of $0.09-29~\mu M$, and generally good selectivity (typically >100-fold) compared to a mammalian cell line (L6). One example showed no significant activity against a rodent model of malaria, and more work is needed to optimise these compounds.

© 2015 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Malaria is a serious endemic disease and is a major threat to public health in more than 100 countries [1,2]. It affects about 200 million people per year, with approximately 580,000 associated deaths [3,4]. In addition malaria exerts a huge economic toll in endemic countries [3]. The need for a continual supply of new antimalarial therapeutics is still as relevant as ever.

Malaria is caused by protozoan parasites of the species *Plasmodium* [5], with *Plasmodium falciparum* being responsible for most malaria-related deaths. In many areas malaria parasites have developed resistance to chemotherapeutic agents such as chloroquine, mefloquine, and sulfadoxine/pyrimethamine. Therefore, an urgent need exists to develop new classes of antimalarial drugs that operate by novel mechanisms of action.

We have recently reported the identification of a hit (**TDR32750**) [6,7] from a screen of the ChemDiv5000 'maximally structurally diverse' compound collection against *P. falciparum*. This screen was carried out by the World Health Organisation Programme for Research and Training in Tropical Medicine (Fig. 1), **TDR32750**

Abbreviations: DMPK, drug metabolism and pharmacokinetics; SAR, structure-activity relationship; WHO, World Health Organisation; WHO-TDR, World Health Organisation Programme for Research and Training in Tropical Diseases.

E-mail address: i.h.gilbert@dundee.ac.uk (I.H. Gilbert).

showed potent activity against *P. falciparum* ($EC_{50} = 9$ nM), and good selectivity compared to L6 mammalian cells (>2000-fold). In order to follow up on the hit, other analogues from ChemDiv and PrincetonBio were screened. This led to identification of two more hits, **TDR45024** and **TDR45033** (Fig. 1), which shared the *N*-arylpyrrole found in **TDR32750**.

In this paper we report the follow up of these compounds, **TDR45024** and **TDR45033**; systematic structure-activity relationship studies were undertaken with the aim of improving antiparasitic activity, and to generate compounds with drug-like physicochemical and pharmacokinetic properties. The studies encompassed variation of the phenyl ring attached to the pyrrole, modification of the pyrrole and modification of the thiazolidine-dione ring. The activity of compounds against the chloroquine and pyrimethamine resistant (K1) strain of P falciparum is reported, as well as a counter-screen (EC₅₀) against the L6 murine cell line, to provide an indication of selectivity (Table 1, Fig. 2).

2. Results and discussion

2.1. Synthesis of cyclohexyl-2-(phenylimino)-4-thiazolidinedione analogues (20–32)

The thiazolidinedione core [8,9] (3) was prepared by condensation of the commercially available 1-cyclohexyl-3-phenyl-2-thiourea (1) with monochloroacetic acid (2; Scheme 1). This was

^{*} Corresponding author.

Fig. 1. The hit TDR32750 and follow-up compounds.

Table 1 In vitro activity of phenyliminothiazolidinones against P. falciparum and L6 cells.

Compound (Z,Z-isomers)	R^1	R^2	P. falc.ª EC ₅₀ (μM)	L-6 cells ^b EC ₅₀ (μM)	cLogP	cLogD pH 7.4
20	-{-{	Me	2.0	>190	6.6	2.7
21	- Š	Me	0.42	>170	7.2	3.1
22		Me	0.25	>200	6.6	2.6
23	CF ₃	Me	0.25	>170	7.5	3.2
24	CF ₃	Me	1.9	>170	7.5	3.2
25	CF₃	Me	0.78	>170	7.5	3.2
26	;pr ^r	Ме	0.09	>170	6.5	3.1
27	75 N	Me	0.61	71	5.4	1.9
28	F ₃ C	Н	2.3	>180	6.7	2.9
29	`	Н	1.6	>200	6.1	2.2
30	ξ.H	Me	3.4	23	5.1	1.5
31	۶ ۱۱ ۶۶-CH₃	Me	1.9	>230	5.6	1.5
32	- -	_	1.9	>180	6.1	2.6

a Plasmodium falciparum. b Measure of cytotoxicity; nd: not determined. Controls: for P. falciparum K1, chloroquine, $EC_{50} = 0.1 \,\mu\text{g/ml}$; for cytotoxicity (L6 cells), podophyllotoxin, $EC_{50} = 0.005 \,\mu\text{g/ml}$. The EC_{50} values are the data are means of two independent assays run in singleton. Yields for compounds **20–32** are 40–80%.

Download English Version:

https://daneshyari.com/en/article/7799303

Download Persian Version:

https://daneshyari.com/article/7799303

<u>Daneshyari.com</u>