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a b s t r a c t

In this article the solution methodology for a beam on a vee-die undergoing large elasto-plastic de-
flection along with nonlinear contact development with the die is discussed. A bi-linear stress strain
material model is converted into an incremental moment- curvature based constitutive law to ease
formulation. The one dimensional governing equation obtained, is highly nonlinear owing to material
and geometry and involve boundary condition change. The entire problem is solved in three steps:
solving an end loaded cantilever under non-conservative force, followed by choosing the solutions which
satisfy the configurational constraint and finally reanalyzing the contact data for springback analysis. The
end loaded cantilever problem is solved by an incremental procedure coupled with Runge–Kutta fourth-
order explicit initial value solver. Suitable normalization of the pertinent variables of the governing
equation paved the way to identify dependence of the responses on a unique non-dimensional para-
meter. The presented methodology doesn't involve large matrix inversion and so is computationally
economic. It may be used in sheet metal manufacturing control facilities to predict springback and re-
duce the expensive experimental iterations.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Since the time Euler introduced the ‘elastica’ theory approxi-
mately 200 years ago, the study of large deflection of flexible
elastic beams has been an ever evolving research area, see [14] . In
the last few decades the minimum weight criteria for the aero-
space industry have led to renewed interest in this area of re-
search, as noted by [5]. Incorporation of elasto-plastic nonlinearity
in the formulation have led to its application in the sheet metal
forming industry also, as seen in [16]. To avoid expensive trial and
error experimental procedure and computationally intensive as
well as exhaustive FEM analysis, a simple algorithm to render fair
estimate of springback and load-deformation response is the
subject matter of the present article.

Analytical solutions to large deflection of elastic beam exist in
the form of evaluation of elliptic integrals, Jacobian integrals etc.
[2] contains a short review of analytical methods and pertinent
references.

The analytical methods are explicit in terms of angle or slope of
the elastic line and are implicit in load and deflection. To obtain
load or displacement solution, iterations are required. For ren-
dering explicit solution, based on displacement and load, several
semi-analytical techniques are formulated. Among these, Adomian

decomposition and homotopy perturbation methods are popular,
they can be found in [8,1] and more recently in [3].

Semi-analytical methods are more efficient in solving problems
with conservative material nonlinearity. Plasticity and friction in-
duced deformations are inherently load-deflection path depen-
dent in nature. Purely numerical methods like FEM can be used for
such problems involving history dependent material property or
follower type load. However owing to computational intensive
demand of FEM, other non-FEM based numerical techniques are of
research interest. Some of the relevant references can be found in
the following but not limited to these are: [23,21,4,10].

In a typical sheet metal air bending process, a thin sheet is
placed horizontally over a vee-die and a punch descends vertically
to deform it plastically, as shown in Fig. 1. With release of the
punch the sheet retracts back partially owing to elastic deforma-
tion. This springback phenomenon is undesirable and hence an
accurate prediction is necessary for satisfactory over-bending of
the sheet to produce desired bend angle. The entire problem is
highly complicated due to nonlinearity in geometry and material
property. Detailed modeling employing FEM, enables a realistic
simulation of the entire deformation phenomenon, showing the
dependence on process variables. Several references on FEM si-
mulation are available, see for example [13,17,20,11,18] (and the
references therein). However, quite often a simple mechanics of
materials based model is required for concept design and forming
control algorithm, see [16]. For forming of long sheets or beams,
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where the bent curvature is more than three times of that of sheet
thickness, see [9], such models are fairly accurate. These simplified
models owing to computational inexpensiveness, may be used for
automation. These simplified models additionally aid in inter-
preting a full field finite element analysis result and thereby en-
hances the understanding of the designer and manufacturer, see
[9].

One of the benchmark works in the field of analytic prediction
of springback in sheet metal bending is provided by [7]. He con-
sidered pure bending of an elasticperfectly plastic beam. [12] ob-
tained analytical springback expressions of beam and thin sheet
made of hardening materials undergoing pure bending. By con-
sidering a rigid-linearly hardening moment-curvature material
model, [22] predicted springback in press brake sheet bending.
These analytic solutions are based on monotonic material models,
and hence are not suitable for situations where incremental law is
required. Recently, [6] obtained vee-bending springback graphics
depending on various process parameters by conducting different
experiments and considering power law kind of stress–strain re-
lationship. In the analytic field, [24] obtained the solution of
springback of sheet metal undergoing vee bending, using Hill's
quadratic yield function and an exponential hardening rule in the
pure bending framework. In very recent years, within pure

bending framework [25] and [26] predicted final curvature of
sheets, by considering monotonic power law hardening relation-
ship. For a comprehensive review of the springback of mono-layer
and bi-layer sheets, [15] may serve as a good reference.

The existing literature on mechanics of materials based models,
mostly consider uniform curvature over the deformed span of the
beam with monotonic material models. On the other hand, the
incremental constitutive law based approaches are largely based
on FEM. The objective of the present work is to present a non-FEM
numerical method, based on mechanics of materials to explicitly
solve the vee-die bending of a thin beam with the more realistic
non-uniform curvature situation considering an incremental ma-
terial model. In this study, an isotropic hardening constitutive law
is presented in incremental form. The approach presented here is
such that, other hardening laws like kinematic or mixed can be
easily integrated into it making the approach generic for cyclic
loading.

It is imperative that a cantilever problem is equivalent to sol-
ving vee-die bending of a beam owing to symmetry in loading and
support. Thus we consider a horizontal cantilever undergoing
large plastic deflection due to the contact driven action of a wedge
descending vertically downward, as shown in Fig. 2. For an end
loaded cantilever beam, kinematic, constitutive and equilibrium
equations are combined to obtain the governing differential
equation, with slope angle as the primary dependent variable. The
obtained nonlinear differential equation is linearized and subse-
quently solved for every (pseudo) time step using Runge–Kutta
fourth-order (RK4) initial value problem solver. The process is
repeated for various wedge angles, lengths of beam and material
properties. Only those solutions that satisfy the pertinent config-
uration constraint are employed to create a feasible solution set for
load-displacement and contact responses. The feasible data are
subsequently reanalyzed to obtain springback responses under
contact conditions depending on various process parameters.

The method presented here is simple to formulate, easy to

Nomenclature

x the horizontal coordinate as shown in Fig. 2.
y the vertical coordinate as shown in Fig. 2.
E Young's modulus
m ratio of tangent modulus to Young's modulus
I area moment of inertia of beam cross section about

neutral axis
l length of beam as shown in Fig. 2.
δ vertical displacement of wedge tip point, i.e point B in

Fig . Fig 4
h q, vertical and horizontal coordinates of point of contact

of beam to wedge respectively, i.e point A of Fig. 4.
a length of contact as shown in Fig. 4.
ϕ angle in radians the tangent at any point on the de-

formed beam makes with the x axis , as shown in
Fig. 2.

ψ angle in radians the tangent at the free end of the
deformed beam makes with the x axis , as shown in
Fig. 2.

s coordinate of any point on the deformed beam mea-
sured from fixed end along the beam as shown in
Fig. 2.

L horizontal distance of vertical edge of wedge to fixed
end as shown in Fig. 4.

θ the wedge angle in radians as shown in Fig. 4.
γ the vee-die angle as shown in Fig. 5.

¯ ¯ ¯s x y, , respective quantities normalized with respect to L, i.e
( )¯ = ( ).

L
.

P the follower load at the free end of cantilever as
shown in Fig. 2.

P̄ the normalized follower load = PL
EI

2

sy initial yield stress of the material in uni-axial tension
ϵy initial yield strain of the material in uni-axial tension

b2 thickness of rectangular beam cross-section
w width of rectangular beam cross section
κ curvature of deformed beam¼ ϕ∂

∂s
κy0 initial yield curvature of deformed beam = σ

Eb
y

κ* yield normalized curvature = κ
κy0

κ̄ length normalized curvature¼ κL
M bending moment at any point on the cantilever
My0 initial yield bending moment of beam cross section

= ϵwb E2

3
y2

M* yield normalized moment = M
My0

D tangent modulus of flexural rigidity : slope of κ−M
curve

D̄ normalized D used in governing equation = D
EI

D* normalized D used in constitutive law, =
κ

*
*

dM
d

( )′. derivative operator = ∂( )
∂s̄

.

Δ( ). incremental operator Δψ=
ψ

∂( )
∂

.

RK4 Runge–Kutta classical explicit method for solving
initial value problems

ζ elastica parameter κ= Ly0

η normalized springback, defined in Eq. (28).

Fig. 1. Schematic of vee-die bending.
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