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a b s t r a c t

The indentation response of a functionally graded piezoelectric material (FGPM) coating-substrate sys-
tem under an axisymmetric conducting indenter is investigated. The material properties of the FGPM
coating vary in an exponential form along the thickness direction. The coupled singular integral equa-
tions are derived to describe the contact problem of the FGPM coating-substrate system under an ax-
isymmetric conducting indenter. The singular integral equations are solved numerically to achieve the
electrical and mechanical responses of the FGPM coating for different indenters, material properties and
substrates. The numerical results show the effects of the conductivity of the indenter on the distribution
of the contact stress and the electric charge.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

According to the concept of functionally graded materials
(FGM) [1], functionally graded piezoelectric materials (FGPM) [2]
are developed to improve the performance of the conventional
piezoelectric materials (PM) which are widely used as sensors,
actuators and transducers. The advantages of the FGPM have been
highlighted by many researchers [3]. They found that the FGPM
can be applied to reduce the mechanical stresses, improve the
stress distributions, enlarge the output displacements and increase
the bonding strength.

The indentation problems of piezoelectric materials have been
analyzed as an important topic in the past few years. The two-
dimensional (2D) analytical solution for piezoelectric materials
under a point force and a point charge was obtained with the
technique of Fourier transforms [4]. Ding [5] solved the problem of
a point force and a point charge acting on a piezoelectric half-
space. The three-dimensional (3D) contact problem for piezo-
electric materials was also studied by Ding et al. [6]. A general
theory for the indentation of piezoelectric materials under an
axisymmetric indenter was developed by Giannakopoulos and
Suresh [7]. The theoretical and numerical results for three kinds of
the indenter on a piezoelectric half-space were obtained in their
work. Sridhar et al. [8] conducted an indentation experiment to

study the mechanical and electrical responses of piezoelectric
materials indented by a conical indenter. They demonstrated that
the indentation experiment is a convenient tool for the char-
acterization of the material properties. By using the potential
theory, Chen [9,10] investigated the contact problem for a trans-
versely isotropic piezoelectric material indented by an axisym-
metric indenter. The mechanical and electrical fields for a piezo-
electric layer with a circular surface electrode and a circular in-
denter were investigated by Wang et al. [11,12]. The frictionless
indentation responses of a piezoelectric film attached to a rigid
substrate system under axisymmetric indenters were considered
by Wang et al. [13] and Wang and Chen [14]. In their research
works, the closed-form solutions were obtained by using the
technique of the Hankel transform. Zhou and Li [15] studied the
frictional sliding contact problem of magneto-electro-elastic ma-
terials under a rigid punch by using the technique of singular in-
tegral equations. Recently, the 2D contact problems of an FGPM
layer coated on a half-plane were treated by Ke et al. [16–18]. They
assumed that the material properties of the FGPM coating vary in
an exponential form along the thickness direction and solved the
problem by using the technique of singular integral equations.
However, to the author’s knowledge, the 3D axisymmetric contact
problem of the FGPM coating attached to a half-space has not been
presented in literature.

Motivated by the previous research works on contact problems
of the piezoelectric materials, the electrical and mechanical re-
sponses of the FGPM coating for 3D axisymmetric conducting in-
denters are investigated in this paper. The material properties are
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assumed to vary exponentially along the thickness direction. The
coupled singular integral equations, which describe the 3D ax-
isymmetric contact problem of the FGPM coating, are derived by
using the method of the Hankel integral transform. The contact
stress and the electric charge distributions for a cylindrical in-
denter and a spherical indenter are computed by solving the sin-
gular integral equations numerically. The effects of the material
gradient on the electrical and mechanical responses for different
indenters are analyzed. The numerical results for different piezo-
electric substrates are also presented and discussed.

2. Derivation of the fundamental solution

Let us consider a functionally graded piezoelectric material
(FGPM) coating of the thickness h0 in the cylindrical coordinate
system ( θr z, , ), which is attached to a piezoelectric substrate, as
shown in Fig. 1. Both the FGPM coating and the piezoelectric
substrate are transversely isotropic. The substrate is treated as a
half-space. The axisymmetric conducting indenter with the elec-
tric potential ϕ is loaded by an applied force P on the FGPM
coating-substrate system to form the contact region whose radius
is a. The poling direction is parallel to the z-axis. The material
properties of the FGPM coating are assumed to have the following
form:

{ ( ) ( ) ∈ ( )} = { ∈ } ( ≤ ≤ ) ( )βc z e z z c e e z h, , , , , 0 1kl kl kl kl kl kk
z

0 0 0

where ckl, ekl and ∈kl are the elastic, piezoelectric and dielectric
constants, respectively. In Eq. (1), β is the gradient index, and ckl0,
ekl0 and ∈kl0 are the material properties of the piezoelectric
substrate.

The governing partial differential equations for the non-
homogeneous medium are given by [19,20]
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where urj and uzj are the radial and axial components of the dis-
placement vector, ϕj is the electric potential, =j 1 refers to the
FGPM coating and =j 2 with β¼0 to the piezoelectric half-space.
Ueda [19] has given the solutions of the governing Eq. (2) for the
axially symmetric problem of FGPM, so we can use these solutions

to deal with the contact problem of FGPM.
In the Hankel-transformed domain, the solutions of the partial

differential Eq. (2) for the FGPM coating ( =j 1) and for the pie-
zoelectric half-space ( =j 2 with β¼0) are given in Appendix A.

The continuity conditions at the interface =z 0 can be written
as

( )σ σ σ σ( ) = ( ) ( ) = ( ) ( ) = ( ) 3a,b,cr r r r D r D r, 0 , 0 , , 0 , 0 , , 0 , 0 ,zz zz zr zr z z1 2 1 2 1 2
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where σ ( )r z,zzj and σ ( )r z,zrj with =j 1, 2 are the normal stress and
shear stress components, respectively, and ( )D r z,zj ( =j 1, 2) re-
presents the electric displacement components.

Because the frictionless contact problem is considered, the
mechanical boundary conditions along the coating surface =z h0

are given as follows:

( )σ σ σ( ) = ( ) ( ≤ ≤ ) ( ) = ( > ) ( ) = ( > ) 4a,b,cr h p r r a r h r a r h r, , 0 , , 0 , , 0 0 ,zz zz rz1 0 1 0 1

where ( )p r is the unknown stress distribution and satisfies the
following equilibrium condition

∫π= ( ) ( )P p t tdt2 . 5
a

0

The electrical boundary conditions for a conducting indenter
can be stated as

( ) = ( ) ( ≤ ≤ ) ( ) = ( > ) ( )D r h q r r a D r h r a, 0 , , 0 , 6a,bz z1 1

where ( )q r is the unknown electric charge distribution on the
surface. Note that ( )q r is zero for an insulating indenter. The total
electric charge Q can be obtained by

∫π= ( ) ( )Q q t tdt2 . 7
a

0

In the Hankel-transformed domain, the continuity and
boundary conditions in (3), (4) and (6) may be written as
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