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a b s t r a c t

In this paper the regularities and criteria for the use of the linear theory of coupled thermoelasticity are
determined. In this paper we considered axisymmetric problem of coupled thermoelasticity. For which a
solution is obtained in closed form. Also, using the method of singular integral equations, boundary value
problems for two-dimensional medium with curvilinear boundaries are solved. Numerical results are
also presented.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recent studies in the field of thermoelasticity have shown that
neglecting of the coupled summand in the system of thermo-
elasticity equations may be unreasonable. This is due to the fact
that parameters of expedient consideration of the coupled ther-
moelasticity model may be implemented in modern electronic
devices, microcircuits, micro-mechanical systems. The develop-
ment of modern technology has provided practical importance
and has drawn attention to the solving of coupled thermoelasticity
problems.

It was shown that deformations didn’t influence temperature
distribution in most of the studies, so fields coupling can be ne-
glected. Moreover, this fact is confirmed by engineering experi-
ments and calculations while operating constructions parts with
sizes in the range of 1 mm–1 m. Coupling effect is not significant in
the unbounded thermoelastic medium during the dynamic pro-
cesses in the sound frequency range, but it is significant at fre-
quencies of ( )ω λ μ λ* = + Τc 2 / (c – thermal capacity, λ μ, – Lame's
constants, λT – heat conduction coefficient) as it was shown in the
earlier studies [11–13] devoted to the development of the coupled
thermoelasticity theory. ω* is approximately ∼ с−10 1010 11 1 for
metals which corresponds to ultrasonic frequencies in the GHz
range. On the other hand, ultrasonic vibrations are arisen in

crystalline solids under the action of heat conductivity and me-
chanical energy which is dissipated because of defects [6]. Eringen
[14] has noticed in his monograph that coupling of thermal and
mechanical fields becomes significant at high-frequency and im-
pulse actions while constructing the microelectronic devices.

Implementation of the above mentioned specific conditions in
the technological development and manufacture of memory chips,
microprocessors, micro- and nano-electromechanical systems sti-
mulated the investigations of coupled thermoelasticity at the be-
ginning of the XXI century. The heat conduction equation, which is
the part of the coupled system of thermoelasticity, has been con-
sidered in detail in Ref. [23]. With the help of thermodynamic laws
and different approaches to linearization, the author has found a
criterion of applying of the coupled thermoelasticity theory: the
term containing a derivative of deformation may not be included
in the heat conduction equation if ω ≫t 10 0 , where t0 – time scale
of heat transfer process, ω0 – frequency scale of the mechanical
vibrations. The paper [7] deals with the initial value problems of
the coupled thermoelasticity and it is mentioned that the coupling
effect should be considered only in the range of high frequency
elastic waves (the ultrasonic range). This range is implicitly linked
to the size of the solid under consideration. Based on the ap-
proximate formula for the first normal frequency of the symme-
trical elastic layer vibrations we have received an estimation for
the typical range of elements to be studied as a part of the coupled
theory: μ ρ≈ × −r 4, 44 10 /10 . Table 1 shows the scale calculation
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for some materials.
Obviously, these scales are implemented in modern technolo-

gical industry. For example, the dimension of modern circuits does
not exceed 0.1 mm, and typical micro-mechanical ultrasonic sen-
sors have the diameter of about 10 μm [25].

The works studying the thermoelastic vibrations of thin plates
in micro-and nano-electromechanical systems (MEMS and NEMS)
appeared during the last decade [10,18,20–22,24].

For example, the effects of thermoelastic damping in bending
vibrations circular plates - circular micro-scale resonator are in-
vestigated in Ref. [24]. In numerical calculations, we took the re-
sonators operating parameters that are used for infra-red ranging
and detection and heat release [10]. Micro-scale circular re-
sonators have thickness of 1–10 mm, the diameter of about 102–
103 mm, and each one is operated at frequencies of 100–1000 MHz.
Taking into account these parameters, the equation of coupled
thermoelasticity for thin plates was solved in this paper. The ar-
ticle presents the comparison of the obtained results with the
experimental data and other known works. Due to Euler-Bernoulli
theory, J. Sharma and D. Grover received interrelated equations for
transverse vibrations of thin beams with holes [22] and in-
vestigated the effect of thermal coupling and mechanical fields,
holes location effect and beam size of energy dissipation which is
caused by thermoelastic vibrations of resonators. A simplified
analytical model of thermoelastic actuation of the micro-me-
chanical ultrasonic sensor is proposed in Ref. [18].

This work is devoted to investigation of thermoelastic harmo-
nic vibrations of isotropic cylindrical solids with holes and plates
with curved boundary under given boundary conditions on their
surfaces. The problems are discussed in the two-dimensional
setting.

2. Setting of the problem

Let us consider a solid limited by the cylindrical surface with
parallel generating line to the axis Ox3 in Cartesian coordinate
system Ox x x1 2 3. The plane x x1 2, respectively, coincides with the
plane of the cross-section surface (Fig. 1).

Let us assume that:

a) efforts are concentrated on the lateral surfaces and volumetric
forces act in the planes which are perpendicular to the gen-
erating line, and do not vary in length;

b) deformations and temperature changes in solid are small;
c) surface and volumetric force are perpendicular to the gen-

erating line and do not depend on the coordinate x3. Under
these conditions, we have the problem of planar deformation
in the plane x Ox1 2 (domain D is limited by cam contour γ). On
the cylindrical surface the boundary conditions are set in
terms of stresses and conditions of heat transfer by Newton's
law.

The complete system of dynamic thermoelasticity equations for
two-dimensional isotropic medium is as follows [15,16]:

coupled system of equations for two-dimensional isotropic

medium (planar deformation)
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Table 1
Dimension scale calculation for some materials within the coupled model of linear
thermoelasticity.

Physical constants Glass Aluminum Polycarbonate

Density ρ, kg/m3 2230 2699 1200
Shear modulus μ, GPа 26.25 25 2.5
r , m �10�9 �10�7 �10�7

Fig. 1. 2d-medium under consideration.
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