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a b s t r a c t

A general formulation of the static deflection under an axial force is required for accurate static, buckling
and dynamic analyses. Even today, however, the helical spring formulas derived in 1960s still continue to
be used in the spring design. So designers maintain to design helical springs with limited options in
making a change in both the helix pitch angles and cross-section types. In this study, in order to carry out
such formulation and get closed-form solutions for the vertical tip deflection, Castigliano's first theorem
is directly employed to the linear elastic problem of cylindrical helical springs with large pitch angles.
Derivation takes into account for the whole effect of the stress resultants such as axial and shearing
forces, bending and torsional moments on the deformations. Cylindrical helical springs having doubly
symmetric cross-sections such as a solid/hollow circle, a square, a horizontal/vertical rectangle, and a
horizontal/vertical ellipse made of isotropic and homogeneous linear elastic materials are all handled in
this work. For each shape of cross-section considered in the study, a closed form global formula in a
compact form is offered for users with the common notations and common design parameters as cur-
rently used. These formulas may be directly used without hesitation for both closed-coiled (CC), α ≤ °10 ,
and open-coiled (OC), α ≥ °10 , cylindrical helical springs. That is one may use those formulas without the
need for any extra information than he already has and without involving any design chart and cor-
rection factor. Some of formulas derived in this study are compared to the commonly used formulas in
the available literature. It is verified that those formulas may be obtained readily from the present for-
mulas by considering their certain assumptions. Benefits of this study related to previous ones are also
discussed. Present global formulas are also verified with available recent experiments and finite element
solutions. The groundwork for the data to be used directly in Castigliano's first theorem was obtained by
using differential geometry of a helical structure from a general spatial rod, and governing equations
derived by using equilibrium equations, constitutive equations and geometrical compatibility relations in
vector forms. As a result, the author expects that a designer is to be free to design more accurate springs
by using the global analytical formulas presented in this study.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A helical spring is a topic of interest in mechanical engineering
design. That may be encountered in practice too many problems
may be solved by using cylindrical helical springs which are also
referred to as coil springs. Cylindrical helical springs cover a wide-
range application area and hold an intense know-how about their
manufacturing. So they are considered separately from non-cy-
lindrical helical springs in this study.

Wahl [1] summarized spring research up to the year 1963.
Wahl's work [1] is assumed to be a "bible" of the spring design by

many spring makers. This authoritative work on spring design
emphasizes the widely used isotropic helical compression and
extension springs. Even today the helical spring formulas derived
by Wahl [1] in 1960s still continue to be used in the design. These
formulas are used in particular conditions/sections and do not
consider the whole effect of the stress resultants such as axial and
shearing forces, bending and torsional moments on the deforma-
tions at the same instant. So they cannot referred to as global. They
are generally valid for small helix pitch angles, α ≤ ο10 , relatively
large spring indexes, C¼D/d ≥10, circular/square cross-sections
and right cylinders.

In general, the effects of the axial force and bending moment
are not considered in the spring formulation. Shearing force effects
are generally considered by employing some correction factors in
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existing formulas. For instance, Timoshenko [2] offered such a
formula by taking into consideration the whole effects of the
shearing force, bending and torsional moments except the axial
force for springs with circular sections and large pitch angles. By
using a “thin slice” method which allows to reduce the three
variable problem in elasticity in two variables, Ancker and Goodier
[3–5] have obtained more accurate solutions based on elastic
theory for cylindrical helical springs with circular sections. They
took combined effects of pitch angle and coil curvature into ac-
count and assumed that the wire diameter of the helix does not
change appreciably during deflection. In Ancker and Goodier's
[1,3–5] formulas, Wahl's [1] non-corrected formula is again mul-
tiplied by a factor which depends on the helix index and helix
pitch angle. There are two different forms frequently used of those
formulas in the literature. In general, Ancker and Goodier's [1,3–5]
formulas are used to improve more accurate finite elements for
general helical structures.

The existing formulas for general cross section shapes other
than circular are too limited. For instance the existing formula
given for rectangular shape by Wahl [1] cannot be used directly
without resorting to the design charts to determine numerical
values of some constants which emerge in the formulas as seen in
Fig. 1. That is in the classical approach in order to the design of
springs having different cross section shapes rather than solid
circle, accessible proposed formulas should require simultaneously
use of some additional charts and tables. This kind of design
process may also end in chart-reading errors.

As stated above, a spring design is often involved elementary
formulas together with tables and charts containing certain pre-
selected specifications and objectives. Spring design takes con-
siderable time due to the trial and error method. Along with the
development in computers, some commercial software programs
based on existing analytical and empirical equations together with
some design charts are suggested for the designers.

A true buckling formulation even in a numerical analysis also
absolutely expects global deflection formulas which precisely de-
fine a pre-buckled deformed configuration of the spring at the
buckling instant [6–9]. Determination of the true geometrical
properties immediately before the buckling instant of the helix
may be done numerically with consuming substantial effort and
time. To simplify the buckling problem considerably and to save an
amount of computing time, for large helix pitch angles, in general
this is carried out by using the existing analytical formulas which

are included into iterations to yield an initial helix angle corre-
sponding to the critical buckling load [10–17]. That is the same
problem is to be solved more than one times until getting a sa-
tisfactory equality of the initial helix angle and buckled helix an-
gle. In recent times, Patil et al. [18–21] gave a considerable atten-
dance on the development closed-form buckling equations for
both cylindrical and non-cylindrical helical springs having circular
sections. They also tried to verify their analytical results by their
experiments performed for close-coiled springs. In one of their
studies Patil et al. [20] considered the effect of shearing force that
was previously ignored for a conical spring in their formulation to
eliminate the differences between theory and experiments.

Although dynamic behavior of isotropic and homogeneous
cylindrical helical springs has been widely studied by now, there
are a little numerical [22–32] and analytical/experimental [32–37]
works on static response of cylindrical helical springs. From those
Dym's [36] exceptional study is also worthy of mention. For the
first time in the literature, Dym [36] derived the spring rate of a
coiled cylindrical extensional helical spring with solid circular wire
under an axial force and an axially directed torque by a consistent
application of Castigliano's second theorem, and showed that the
coupling between the two loads may not always be neglected.
Dym's [36] exceptional study presenting the common notion
about the effects of each stress resultants on the deformation of
the spring, unfortunately, was performed for only cylindrical he-
lical springs with solid circular sections without presenting any
formula for practical use. Haktanır [35] also worked out the static
behavior of isotropic cylindrical and non-cylindrical helical springs
(barrel, hyperboloidal and conical types) subjected to an axial
static force. He presented analytical formulas for the vertical tip
deflection of those springs by considering the whole effects of the
stress resultants, large helix pitch angles and different types of
cross sections with the help of the Castigliano's first theorem.

In the realm of civil engineering and biomechanical applica-
tions, a helical geometry is also used in the form of other helical
construction types such as helical cables (strands) and helical
carbon nanotubes. Although this type of helical structures are out
of scope of the present study, it may be useful to mention about
few references in connection with them [37–41]. By using the
homogenization theory in a twisted coordinate system, Frikha
et al. [40] reduced the model to a 2D one, i.e. a cross-section model
to consider helical symmetry more efficiently in helical structures.
The method developed in [40] was restricted to multi-wire helical
structures composed of a stack of helical wires wrapped with the
same twisting rate around a straight axis. This approach was va-
lidated through comparison with analytical solution suggested by
Ancker and Goodier [3] for helical single wire structures and 3D
detailed finite element solution for seven-wire strands. Nikolas
and Gerald [41] employed existing analytical theory for helical
cables and incorporated the radial deformation in the theory as an
additional kinematic degree of freedom. They verified their results
with the use of a finite element model over a wide range of helix
angular configurations.

The differences between elementary formulas and experiments
still continue to exist. In general, for each fresh situation en-
countered, the researches try to fit the new problem to the ex-
isting formulas by offering additional coefficients as correction
factors. This kind of studies together with the existing ones also
lead to confusion in the minds of especially beginners.

Paredes [37] developed experiments to test the accuracy of the
common formulae given by Wahl [1] that define spring's static
behavior. Paredes [37] tested cylindrical compression springs with
a constant pitch. Paredes [37] showed that the common formulae
offered by Wahl [1] gave quite accurate results when at least five
free coils were considered for springs with closed and ground ends
but results could be of poor accuracy for large indexes and few free

Fig. 1. Variation of the constant γ with respect to the spring index and height/base
ratios of rectangular cross sections [1].
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