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a b s t r a c t

In this article, the post-buckling behaviour of functionally graded curved shell panels of different shell
geometries (spherical, elliptical, cylindrical and hyperbolic) are investigated under the uniaxial and the
biaxial edge compression. The inhomogeneity of the functionally graded material along the thickness
direction is achieved using power-law distribution through Voigt's micromechanical model to obtain the
effective material properties. The kinematic model is developed with the help of higher-order shear
deformation theory in conjunction with Green-Lagrange geometrical nonlinear strains. The governing
equation of the axially loaded functionally graded curved panel is derived using the minimum total
potential energy principle. The nonlinear finite element steps have been employed to discretise the shell
panel domain and solved with the help of Picard's iterative method to obtain the desired load parameter.
Further, the effects of different parameters such as the amplitude ratios, the power-law indices, the
curvature ratios, the thickness ratios, and the support conditions on the buckling and post-buckling
responses of the functionally graded curved panels are demonstrated through suitable numerical illus-
trations.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are now being adopted
for the structural component in aerospace industry due to their
tailor-made characteristics along the thickness direction. The
structures subjected to in-plane loading are prone to buckle.
However, buckling does not confirm the ultimate failure of any
structure and can carry an extra amount of load after buckling is
called post-buckling. In this regard, the stability of functionally
graded (FG) structures has been examined and reported by many
previous works. Different solution techniques and shell/plate
theories have been adopted to execute the necessary investigation
and few of the recent research contributions are discussed in the
following line to point out the knowledge gap.

Sofiyev [1–3] used Galerkin method to study the buckling of FG
cylindrical and truncated conical shells under internal and ex-
ternal pressure. Duc and Tung [4,5] employed the Galerkin method
to analyse the post-buckling of FG cylindrical panels subjected to
axial compression by considering the initial geometrical im-
perfection. They employed the classical laminated plate theory
(CLPT) and first-order shear deformation theory (FSDT) mid-plane
kinematics and von-Karman–Donnell type geometrical

nonlinearity. Yang et al. [6,7] investigated the post-buckling be-
haviour of FG cylindrical shell panel under the thermomechanical
load using the semi-analytical differential quadrature-Galerkin
method. The authors used the CLPT and the higher-order shear
deformation theory (HSDT) mid-plane kinematics in conjunction
with von-Karman–Donnell-type nonlinear strain. Duc and Quan
[8] examined analytically the thermomechanical buckling and
post-buckling behaviour of the thick doubly-curved FG shallow
panels resting on elastic foundations using the Galerkin method
and CLPT mid-plane kinematics. Wu et al. [9] examined the post-
buckling responses of FG flat panel using the finite double Che-
byshev polynomial approach and the FSDT based von-Karman
nonlinear strain. Zhao et al. [10,11] examined the buckling beha-
viour of FG flat panel subjected to in-plane mechanical and ther-
mal load using the element-free kp-Ritz method and the FSDT
mid-plane kinematics. Shahsiah et al. [12] utilised the FSDT based
Sanders kinematics to obtain the stability equations for simply
supported FG spherical deep shells. Liew et al. [13] examined the
post-buckling behaviour of FG cylindrical shell panels under the
edge compression and thermal loading using the FSDT based von-
Karman strain field and the element-free kp-Ritz method. Woo
et al. [14] used the HSDT based von-Karman large deflection the-
ory to obtain the post-buckling responses of FG flat/cylindrical
panels under in-plane loadings. Shen [15–21] employed the CLPT/
HSDT mid-plane kinematics based von-Karman-Donnell-type
strain field to examine the stability of FG flat/cylindrical panels
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subjected to various loading conditions. Huang and Han [22–27]
study the buckling/post-buckling responses of temperature-de-
pendent cylindrical FG shells using the Donnell shell theory. Dar-
abi et al. [28] utilised the Galerkin approach for nonlinear stability
of cylindrical FG shell subjected to periodic in-plane loading. Eb-
rahimi and Sepiani [29] examined the dynamic stability of FG
cylindrical shells under the combined loading by including the
transverse shear and rotary inertia effect. Tung [30] studied the
nonlinear thermomechanical stability of FG circular plate and
spherical panel using the Galerkin method and the FSDT kine-
matics. Thai and Choi [31] employed the simple refined theory to
investigate the buckling behaviour of FG plates for various support
conditions. Valizadeh et al. [32] utilised the NURBS based Bubnov-
Galerkin iso-geometric finite element method (FEM) and FSDT
displacement field to study the stability of FG flat panels under the
thermal field. Bakora and Tounsi [33] used the Galerkin technique
and the HSDT based von- Karman kinematics to study the post-
buckling of FG flat panel subjected to various loading conditions.
Meksi et al. [34] proposed a simple FSDT by including the neutral
surface position and subsequently performed the static and dy-
namic study of FG plates. Bennoun et al. [35] developed a new
five-variable refined plate theory to examine the free vibration of
FG sandwich plates. Singh and Babu [36] examined the thermal
buckling responses of laminated conical shell panel embedded
with and without piezoelectric layer using the HSDT kinematics.
Lal et al. [37] used the HSDT based von-Karman nonlinear kine-
matics to study the thermomechanical post-buckling of FG plate
with and without cut-outs.

We note from the available literature that most of the studies
reported on the buckling and/or post-buckling behaviour of the
flat and single-curved shell panels under the uniaxial and the
biaxial load. Based on the authors’ knowledge, the post-buckling
behaviour of the FG doubly-curved shell panel using the HSDT and
Green-Lagrange kinematics has not yet been reported in open
literature. Hence, in this article authors have attempted to ex-
amine the critical buckling and post-buckling load parameters of
the FG curved shell panels of different geometries (spherical, el-
liptical, cylindrical and hyperbolic) under both the uniaxial and the
biaxial edge compression except the conical shell panel. It is also
important to mention that the present numerical model includes
all the nonlinear higher-order terms to evaluate the geometry
matrix and the nonlinear stiffness matrices to capture the geo-
metrical distortion under the biaxial compression loading for the
exact buckling and the post-buckling strength.

2. General mathematical formulation

In the present analysis, a generalised doubly-curved FG shallow
shell panel of uniform thickness ‘h’ with principal radii Rx and Ry is
considered in a rectangular base of sides a and b, and presented in
Fig. 1. Different shell configurations such as spherical (Rx¼Ry¼R),
elliptical (Rx¼R; Ry¼2 R), hyperbolic (Rx¼R; Ry¼-R) and cylind-
rical (Rx¼R; Ry¼1) panels are be modelled from the present
doubly-curved shell panel by varying the curvature radii.

2.1. Displacement field

The HSDT with nine degrees-of-freedom is used to model the
displacement field of FG curved panel in the mid-plane (z¼0) [38].
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displacements in (x, y, z) directions, respectively. (θy, θx) and

( )θ θ* * * *u v, , ,x y0 0 are the shear rotations and the higher-order
terms.

2.2. Strain-displacement field

The strain-displacement field { }ε ε ε γ γ γ= xx yy xy xz yz
T of the

FG curved shell panel is defined in the Green-Lagrange sense [38].
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The linear ε{ }l and the nonlinear ε{ }nl strain tensors can be
rewritten in terms of mid-plane strain vectors ( ε{ ¯ }l , ε{ ¯ }nl ) and
thickness co-ordinate matrices ([ ]Tl , [ ]Tnl ).

Fig. 1. Geometry and dimension of doubly-curved shell panel.
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