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a b s t r a c t

This paper verifies fin-homogenization for finite element analysis of heat exchanger cores with stacking
of flat tubes and thin wavy fins. A first-order homogenization method is proposed on the assumption that
uniform deformation prevails a short distance away from each fin layer in the stacking direction while
the wavy fins have periodicity in the in-layer directions. Using this homogenization method, the
homogenized elastic stiffness values of outer and inner fin layers in an intercooler are evaluated by
considering real and sinusoidal shapes of the wavy fins. The homogenized elastic stiffness values attained
are examined by performing fin-homogenization-based (fin-h-based) analyses, full-scale analyses, and
experiments of tube-fin layered specimens subjected to compression and bending. It is shown that the
fin-h-based and full-scale analyses give good agreements to each other even in the presence of macro-
strain gradients in the outer and inner fin layers though the homogenization method is of first-order.
Moreover, it is shown that the fin-h-based analyses reproduce well the experiments if the homogenized
elastic stiffness values obtained for the real shapes of outer and inner fins are used in the analyses. It is
also shown that the Bernoulli-Euler assumption is not satisfied in the homogenized outer fin layers
under longitudinal bending because the homogenized elastic shear stiffness responsible for the bending
is very low.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Tube-fin structures with stacking of flat tubes and wavy fins
have been in heavy usage as heat exchanger cores in radiators,
intercoolers, and so on. A heat exchanger of this type is schema-
tically illustrated in Fig. 1. The flat tubes in the figure can be in-
serted by wavy fins, called inner fins, to enhance heat transfer, as
depicted in Fig. 1(b). Temperature generally distributes non-uni-
formly in this type of heat exchangers because a fluid flows in the
tubes from a high to a low temperature tank. Due to the start/stop
of engines and generators, the temperature profiles cyclically vary
to cause cyclic thermal stresses. Consequently, fatigue cracks may
occur at the joint of a tube and a tank if heavy endurance tests are
performed.

Finite element analysis is effective for predicting the fatigue
failure mentioned above. If heat exchangers as illustrated in Fig. 1

are fully divided into finite elements, the number of finite ele-
ments must be enormously large to cause very high computational
loads. This problem can be overcome by applying homogenized
material models to heat exchanger cores [1–5]. For the type of heat
exchangers illustrated in Fig. 1, however, it is difficult to homo-
genize all parts of tube-fin structures, because each tube has no
periodicity in the end portions in the width-direction, as indicated
in Fig. 1(b). Moreover, fatigue failure may occur at the junction of a
tube and a tank, as already stated. This means that it is not ap-
propriate to homogenize the tubes. It is therefore suggested to
homogenize only the fin layers for leaving the tubes unchanged
[6,7].

Homogenized mechanical properties of inhomogeneous mate-
rials can be evaluated by averaging micro-stress and micro-strain
in periodic unit cells (PUCs), or more generally representative
volume elements (RVEs), in which macro-strain is assumed to be
uniform [8–12]. This kind of homogenization methods is classified
as first-order. However, first-order homogenization methods can-
not be suitable if macro-strain has non-negligible gradients in
PUCs, or RVEs, in boundary-value problems [13]. A typical example
is bending of a beamwhich consists of a relatively small number of
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PUCs in the height direction, because the PUCs in such beams
normally have macro-strain gradients in the height direction
[13,14]. Macro-strain gradients have been taken into account by
developing second-order homogenization methods [13,15].

Tubes and fin layers in the type of tube-fin structures illu-
strated in Fig. 1 can be subjected to bending, in addition to tension/
compression, due to non-uniform temperature profiles and outer
constraints. It is noted that, because the stacking distance of tubes
and outer fin layers may not be sufficiently small, first-order
homogenization methods may not be suitable for fin-homo-
genization in the presence of bending. It is, therefore, worthwhile
to examine first-order homogenization methods for fin-homo-
genization in tube-fin structures subjected to bending. If a first-
order homogenization method is verified for fin-homogenization,
the resulting homogenized elastic stiffness can be immediately
used in commercial finite element software in contrast to second-
order homogenization methods.

A notice is provided for the fin-homogenization stated above.
The outer and inner fins have periodicity in the in-layer directions,
while no periodicity can be imposed on the fin layer boundaries in
the stacking direction, as described in Section 2.1. In other words,
the homogenization methods developed for three-dimensional
(3D) periodic composites are not directly applicable to the outer
and inner fins. Hence, it is necessary to assume an appropriate
boundary condition in the stacking direction for evaluating the
homogenized properties of the outer and inner fin layers.

This paper describes the validity of fin-homogenization for finite
element analysis of tube-fin structures with stacking of flat tubes
and thin wavy fins. First, a first-order homogenization method is
proposed on the assumption that uniform deformation prevails a
short distance away from each fin layer in the stacking direction
while the wavy fins have periodicity in the in-layer directions. The
bilayer model developed by Tsuda and Ohno [16] is then used to
attain the homogenized elastic stiffness of a fin layer. Second, the
proposed homogenization method is applied to real and sinusoidal
shapes of outer and inner fins in an intercooler. Third, the obtained
homogenized elastic stiffness values of the outer and inner fin layers
are examined by performing fin-homogenization-based (fin-h-
based) and full-scale analyses of a tube-fin layered board subjected
to uniaxial compression and cantilever bending. Finally, fin-homo-
genization is verified by performing experiments and fin-h-based
analyses of tube-fin specimens subjected to uniaxial compression
and four-point longitudinal bending. It is shown that the experi-
ments are predicted well by the fin-h-based analyses using the
homogenized elastic stiffness values obtained for the real fin shapes
although the homogenization method is of first order. It is also
shown that the Bernoulli-Euler assumption is not satisfied in the
homogenized outer fin layers under longitudinal bending because
the homogenized elastic shear stiffness responsible for the bending
is very low.

2. Homogenization method for fin layers

In this section, a first-order homogenization method is pro-
posed to evaluate the homogenized elastic stiffness of a fin layer.
Vectors and tensors are expressed using components with respect
to the Cartesian coordinates ( = )x i 1, 2, 3i , and differentiation
with respect to xi is indicated as ( ) i, . The summation convention
is used. The Cartesian coordinates x, y, and z are also used in
Section 2.2.

2.1. Basic assumptions and equations

Let us consider a thin wavy fin, of height h̃, sandwiched by
plates. The fin and the plates are made of a base solid. We assume
that the wavy fin is periodic in the in-layer directions. We further
assume that uniform deformation prevails in the plates at a dis-
tance h̄ away from the fin layer, because mechanical interactions
necessarily occur on the boundaries between the fin and plates.
These assumptions allow us to consider the unit cell Y illustrated
in Fig. 2. This unit cell is referred to as the plate-fin unit cell
hereafter. The displacement ui in the solid part Y s in the plate-fin
unit cell Y can then be written as

= + * ( )u E x u 1i ij j i

where Eij indicates the macro-strain, xi denotes the position in Y s,
and *ui signifies the perturbed part of ui satisfying

*( ) = *( ) ∂ ( )+ −x xu u Yon , 2i i in
s

* = ∂ ( )u Y0 on . 3i out
s

Here, ∂Yin
s and ∂Yout

s denote the in-layer and out-of-layer bound-
aries of Y s, and +x and −x are a pair of points on ∂Yin

s (Fig. 2). Eq. (2)
is the Y-periodic condition on ∂Yin

s , whereas Eq. (3) is the uniform
deformation condition on ∂Yout

s .
When ui is written as Eq. (1), the stress in Y s is expressed as1

σ ε= ( + *) ( )D E , 4ij ijkl kl kl
s

where Dijkl
s is the elastic stiffness of the base solid, and ε*kl indicates

the perturbed strain defined as

ε* = ( * + * ) ( )u u
1
2

. 5kl k l l k, ,

The stress balance in Y s is represented in the following form in the

Fig. 1. Heat exchanger with core composed of flat tubes and wavy fins; (a) schematic view of heat exchanger and (b) cross-section of flat tubes.

1 Since the plate-fin unit cell shown in Fig. 2 is made of a single base solid, the
homogenized thermal expansion coefficient of the unit cell is trivially the same as
that of the base solid. Hence, the present study focuses on the mechanical homo-
genized behavior, and accordingly, thermal stress and thermal strain are not con-
sidered in Eq. (4).
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