
Partial slip incomplete contacts under constant normal load
and subject to periodic loading

D.A. Hills a,n, R.M.N. Fleury a, D. Dini b

a Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
b Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK

a r t i c l e i n f o

Article history:
Received 17 December 2015
Accepted 28 January 2016
Available online 3 February 2016

Keywords:
Frictional contact
Edge asymptotes
Fretting

a b s t r a c t

We present a general formulation for the stick slip behaviour of incomplete contact under oscillating
loading, but with a constant normal load. An asymptotic description of the contact traction very close to
the contact edges is used. The slip zones present in the steady state with cyclically varying bulk tension
and shear force (with an arbitrary phase shift) are found. The range of the variation of the state of stress
near both of the contact edges and the respective slip zone sizes are defined in terms of the loading
parameters, including the phase angle. The quality of the approximations used by the asymptotic
approach and the range of applicability of the method is also analysed in detail in this paper.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The existence of small areas of slip is the dominant factor in all
fretting problems. When present it is almost invariably at the
edges of a contact, and it is from these points that cracks often
nucleate. We know that there are mainly two forms of contact
geometry which may arise in any engineering problem: first, there
are sharp edged contacts which give rise to stick (usually) at the
edges and which have to be handled by wedge asymptotic
methods. The other class of contact comprises those which are
incomplete (dovetails, firtrees, Hertzian contact) and where,
because the contact pressure falls smoothly to zero at the edges,
there is invariably some local slip. This paper is concerned exclu-
sively with the latter type, and its function is to demonstrate that
the asymptotic forms introduced in earlier articles both (a) fully
control the extent of slip and (b) may be used to infer the fretting
fatigue strength of problems of a very wide range of geometries.
Here, it is assumed that the contact is subject to a constant normal
load, so that the size of the contact (and the location of the contact
edges) remain fixed.

The first study of a stationary partial slip contact problem was
carried out by Cattaneo [1] who analysed the Hertz problem.
Apparently unaware of this Mindlin looked at the same problem a
little later and extended the solution to look at further properties
[2–4]; much of Mindlin's work was on the axi-symmetric form of

the contact where the Poisson effect was ignored, but the solution
has the additional property that it is possible to infer its absolute
tangential (as well as normal) compliance. An important feature of
Mindlin and Cattaneo's solutions is that they both assume that the
origin of shear tractions along the interface is the exertion of an
external shear force and, in most practically arising problems this
is augmented by the existence of remotely applied differential
surface tensions in the contacting bodies, which was first analysed
in [5], for the plane case. Whereas the presence of a remote shear
induces slip zones of the same sign the exertion of remote tension
induces slip zones of opposite sign. The next major development
in solutions came with the formulation of the Ciavarella–Jäger
theorem [6,7] which showed that the corrective shear traction in
the slip zone is a scaled (and possibly shifted) form of the contact
pressure. This development has proved invaluable in solving many
partial slip contact problems both with and without tension, but
its major drawback is that it cannot be applied where slip zones of
opposite sign arise.

The proposal here is to model everything at the contact edge by
two asymptotic forms [8,9] and to show how those solutions may
be used to infer everything about the local edge slip region. The
method is very simple to apply, but the price one pays for the
simplicity is that it may only be used when the slip region is a
relatively small fraction of the contact half-width; that is, it will
not work when the problem approaches the sliding condition. On
the other hand, that does not often arise in practice, and the major
advantage is that we may infer material properties from a simple
laboratory test [10] which are transferable between a wide range
of prototypical geometries.
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2. Basic asymptotes and their calibration

2.1. Shear contact traction

Consider the incomplete contact shown in schematic form in
Fig. 1(a), but note that it need not be Hertzian. We assume, initi-
ally, that the coefficient of friction is sufficiently high for all slip to
be prevented. If the contact half-width is a, the shearing traction,
q(x), induced by a shear force, Q, is given by

qðxÞ ¼ Q

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�x2

p : ð1Þ

If, on the other hand, remote bulk tensions, σ1 in the upper
component and σ2 in the lower component are applied in the two
bodies, a shear traction distribution of the form

qðxÞ ¼ � σ0x

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�x2

p ; ð2Þ

arises, where σ0 ¼ σ2�σ1. A shift of coordinates to the left hand
edge (x¼ �a) is effected by setting s¼ aþx, and we may write the
shear traction in the neighbourhood of this point, s-0, and
neglecting the higher order terms, in the form

q sð Þ ¼ KTffiffi
s

p ; ð3Þ

where

KT ¼
Q

π
ffiffiffiffiffiffi
2a

p þσ0

4

ffiffiffi
a
2

r
: ð4Þ

It should be emphasized that this result is universal in the sense
that it applies to contacts of any geometric form, subject only to
the requirement that each body is capable of idealization by a half-
plane. In some cases, the half-plane idealisation is applicable only
near the edge of the contact (e.g. elastically similar flat and
rounded punch) but, even if the centre of contact does not behave
as a half-plane, the approach can still be implemented [11]. We
adopt here a local convention that a positive value of KT implies, at
each contact edge in body 2, a shear traction which is directed
inwards, away from the contact corner. In body 1, the opposite
occurs and KT is positive when the shear traction acts outwards.
Note that when a positive shear force, Q, is applied as in Fig. 1(a),
the shear traction in body 2 is directed inwards on the left hand
edge, but outwards on the right hand edge. On the other hand,
when a positive bulk tension, σ0, is applied, the shear traction is
directed inwards in body 2 on both the left and right hand edges.
At the right hand contact edge, we find that

KT ¼ � Q

π
ffiffiffiffiffiffi
2a

p þσ0

4

ffiffiffi
a
2

r
: ð5Þ

The tractions on the left hand edge act inwards on body 2, i.e.
KT is positive, if

σ0a
Q

o�4
π
; ð6Þ

and on the right hand edge if

σ0a
Q

4
4
π
: ð7Þ

2.2. Normal contact pressure

We turn, now, to a description of the contact pressure, p(s), in
the neighbourhood of the contact edge. A single term is used and,
for half-plane problems, we know from basic Riemann–Hilbert
theory that it must decay in a square root bounded manner. Hence,
we define the pressure near the contact edge in terms of the
normal edge scaling factor, KN, as

pðsÞ ¼ KN
ffiffi
s

p
: ð8Þ

This is geometry dependent and, generally, where the contact
problem itself is solved by, for example, the finite element method,
we can find the value by plotting pðsÞ= ffiffi

s
p

, and inferring the value
as s-0. Note that results very close to the contact edge may need
to be discarded if convergence of the solution is imperfect. In the
case of contacts having a simple geometry we can find the cali-
bration for KN in closed form, and this is done in Appendix A for a
Hertzian contact [8], for contact of shallow wedges [14], and for
the cases of slightly rounded contact [11–13].

3. The partial slip problem

3.1. Size of the slip zone in the steady state loading regime

The contact pressure in the slip regions (if small) is encapsulated in
the value of KN, and so too is the magnitude of the shear tractions if
the coefficient of friction, f, is specified. What remains to be deter-
mined is simply the extent of the slip zone, d. In any cyclic loading
problem, unless the applied loading is fully reversing, some frictional
shakedown will always occur within the first cycle so that the steady
state extent of slip, d, is independent of the mean value of Q or σ0 or,
here, KT. It is only the range, ΔKT , which matters. So, for any closed
loop trajectory in Q�σ0 space we need only find how this maps into
KT in order to find the range itself. The steady state slip length (and of
course the forwards and backwards slip lengths must be of the same
extent, for conservation of material) is given by [9]

fd¼ΔKT

KN
: ð9Þ

In fact, the mean value of KT will affect the solution only in so far as it
controls the residual interfacial shearing tractions (or residual inter-
facial slip displacement distribution) in the stick region. But there is no
reason to suppose that this would have any bearing on the fatigue
strength of the contact.

Eq. (9) is different from the slip zone size under monotonically
increasing loading by a factor 2. The slip zone for the initial loading
phase was derived by Dini and Hills [8] and in the presence of an
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Fig. 1. (a) Incomplete fretting problem under normal, shear and bulk tension loading. (b) Contact tractions and edge asymptotes.
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