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Though receding contacts occur in many engineering components, such as bolted joints, their properties
are little understood. Previous studies have shown that the contact area in receding contacts reduces
with the application of load and is load independent. Here an infinitely long layer in contact with a half-
plane of the same material and subject to semi-infinite uniform normal surface pressure applied to the
surface of the layer everywhere except along a portion of finite width is solved by applying distributions
of edge dislocations. Solutions for the location of the areas of slip and separation along the contact
interface are obtained for a variety of coefficient of friction values and no-pressure zone widths. The
contact tractions are also computed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

While receding contacts are present in many mechanical
components and structures, including bolted joints, their physical
properties are not understood well, and the literature regarding
them is sparse. A detailed understanding of the physical properties
of receding contacts is required to model accurately the damping
properties, fretting damage and subsequent failure of many
mechanical and structural components that involve receding
contacts.

Keer et al. conducted some work on receding contacts in the
1970s [1,2]. Most recent studies, such as by El-Borgi et al., have
investigated receding contacts, under different loading conditions
and for different material properties, assuming frictionless contact
surfaces [3-7]. Further, two recent studies that included frictional
effects assumed slip throughout the contact area during a fully
sliding situation [8,9]. There is however a gap in the literature
regarding the fundamental quasi-static frictional behaviour of
these class of contacts when stick, slip and separation are present.

Ahn and Barber solved using finite elements a quasi-static
receding contact problem under-cyclic loading taking into account
both stick and slip [10]. Further, Chaise et al. solved a 2D small-
strain linear elastic contact problem of a semi-infinite layer on a
half-plane of the same material subject to a line load, also taking
into account of both stick and slip in the contact region [11]. In this
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paper, the analysis is extended and a contact problem with a semi-
infinite layer, of thickness c, in contact with a half-plane, y <0,
subject to surface pressure, as shown in Fig. 1, is solved. Both the
layer and half-plane are of the same homogeneous isotropic
material.

Normal pressure, oyy(x,c), is applied to the points (x,c) on the
surface of the layer, y=c, everywhere except over a region of width
2a, such that

oy(X,0)=—p, x=>a,
=0, x<a.

The origin is taken to be at the contact interface, equidistant
from the two pressure patches. Though the problem loading and
geometry is not immediately applicable to an analysis of a specific
practical situation, such as in a bolted joint, the solution to this
problem should provide insights into the fundamental properties
of receding contacts under pressure loading. This problem is par-
ticularly attractive since only two parameters are involved in the
problem definition—a/c, which defines the geometry and the
loading of the problem, and the coefficient of friction, f. Further the
difficulties due to lift-off of the layer at infinite distances away
from the contact region are avoided.

In receding contact problems such as the problem studied here,
the separation of surfaces is instantaneous and discontinuous with
the application of any finite load, making modelling with finite
elements cumbersome due to the discontinuous separation of a
large number of nodes. In this paper, as was done by Chaise et al.
[11], a more rigorous solution is obtained by the application of
distributed dislocations and solving numerically the integral
equations that result to ensure contact conditions are satisfied.
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Fig. 1. The problem geometry and loading.

Unlike the problem solved by Chaise et al. separation of points at
infinite distances from the contact region does not occur and
hence additional complexities and approximations required in the
solution of the integral equations are avoided.

2. Solution using distributed dislocations

In this solution method, the layer and the half-plane in contact
are modelled as though they are fused as one body making a half
plane, y <c, and a distribution of climb and glide dislocations are
applied along the surface y=0, at the location of the contact sur-
face in the problem definition, to simulate the effect of the contact.
These dislocations are not lattice defects but represent displace-
ment discontinuities. For a detailed exposition of the technique,
refer to Hills et al. [12].

The bilateral stress components are the stress components due
to the external loading on the half-plane, y <c. The total stress
components for any point on the layer or the half-plane are given
by the sum of the bilateral stress components and the stress
components at the point due to the presence of the distributions
of dislocations.

Coloumb's friction law states that at a point (x,0) along the
contact interface

|oxy(X,0)| <floyw(x,0),

where oyy(x, 0) and oyy(x,0) are the shear and the normal traction
components that act at the point (x,0) on the contact surface
respectively. Slip occurs when o,y (x,0) =fo,y(x,0). Further, the
Signorini condition stipulates that when separation occurs at a
point (x,0)

oyy(%,0)=0,
and when separation does not occur
oyy(%,0) < 0.

Stick occurs when there is neither separation nor slip, i.e.
oyy(x,0) <0 and | oxy(x,0)| < f|oyy(x,0)].

For values of f and a/c for which the tractions determined by
the bilateral solution are found not to correspond to stick
throughout the contact surface, distributions of glide and if
required climb dislocations are applied to regions along the y=0
surface. The location of the distributions is computed so that the
regions containing climb and glide dislocations satisfy the condi-
tions for slip and separation respectively, and the condition for
stick is satisfied at all other points at the contact surface.

The bilateral solution for the traction components along the
contact interface, y=0, is found by the appropriate integration of
Flamant's solution for a normal line force on the half plane, y <c,
over the area to which the pressure is applied in this problem.

The bilateral normal and shear traction components, 6,,;(x,0)
and o,y(x,0), that act at points (x,0) along the contact surface
were thus found to be given by

nyb (X, 0) _ 1

p n((a+x)2+c2 +X

) [(a +X)c— ((a+x)2 +c2) arc tan <aL>}

1

a0

X

Oxyb(X, 0) _ c? B c? 2)
p _ﬂ((a+x)2+c2) n((a—x)2+c2)'

It is expected that the normal traction will be symmetrical and
the shear traction will be anti-symmetrical with respect to the y-
axis. Depending on the coefficient of friction and the a/c value,
three possible outcomes are envisioned.

1. Stick occurs everywhere along the contact interface: in this case
the bilateral solution wholly satisfies the condition for stick at
every point along the contact interface.

2. Slip occurs along portions of the contact interface, but separa-
tion does not occur anywhere at the interface: it is expected
that there will be two regions of slip, two on either side of the y-
axis, with a stick zone at the centre, see Fig. 2. In modelling this
case, a distribution of glide dislocations is applied to portions of
the contact area to satisfy the conditions for slip and stick along
the interface.

3. Both slip and separation occur along portions of the contact
interface: it is expected that separation and stick zones will
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Fig. 2. Solution in which slip but no separation occurs. Slip is expected to occur in
two regions along the contact interface.
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Fig. 3. Solution in which both slip and separation occur. Separation is expected to
occur at the central region of the contact interface along the interval [—e e] and slip
is expected to occur along the contact interface along the interval [—-g g].
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