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a b s t r a c t

An exact elastodynamic model based on Navier equations of linear elasticity is formulated to describe the
three-dimensional natural oscillations of an elliptic cylinder of finite length with shear diaphragm end
conditions, and containing an inner (coaxial) elliptical cavity of arbitrary size, location, and orientation.
The formulation is based on Helmholtz decomposition theorem, the method of separation of variables in
elliptical coordinates, and the translational addition theorems for Mathieu functions. The first three
natural frequencies are calculated for selected cylinder lengths, cross-sectional aspect ratios, and cavity
location/orientation parameters. Also, some representative 3D deformation mode shapes are depicted in
vivid graphical form. The precision of solutions is checked through proper convergence studies, and the
validity of results is verified with the aid of a commercial finite element package as well as by com-
parison with the available literature data. The presented exact Mathieu series solution is believed to be
the first attempt on the vibrational characteristics of finite-length eccentric elliptical cylinders.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dealing with three dimensional dynamic problems of elasticity
is an intricate matter with many complications linked to the asso-
ciated governing differential equations and satisfaction of specified
boundary conditions. In particular, the exact elastodynamic analyses
of solid and thick hollow cylinders of finite lengths are difficult
structural dynamic problems that have recently been thoroughly
investigated [1–4]. Analytical solutions can readily be obtained only
when the outer and inner cylinder boundaries are concentric circles
or confocal ellipses [2,5,6]. If the boundaries are eccentric or of
some other shape, semi-analytical approaches as well as a wide
range of approximate numerical methods have generally been uti-
lized to treat the problem [7–9]. In contrast, there are very few
analytical research works that address the dynamic behavior of
eccentric cylinders [3,10–13] or cylindrical shells with circumfer-
ential wall thickness variations [14,15]. For example, Suzuki and
Leissa [14,15] employed thin and thick shell theories along with
power series expansion method to study free vibrational char-
acteristics of circular and noncircular (elliptical) cylindrical shells of
circumferentially varying thickness with shear diaphragm end
conditions. More recently, Hasheminejad and Mirzaei [3] employed
the translational addition theorem for cylindrical wave functions to

develop an exact 3D elasticity series solution for free vibration
analysis of a simply-supported circular hollow cylinder of finite
length with an eccentric inner circular cavity. Just recently, Hashe-
minejad and Mousavi-Akbarzadeh [12,13] extended the latter work
[3] to address steady-state and transient acoustic radiation from
simply-supported eccentric hollow circular cylinders.

The main purpose of current paper is to employ the method of
separation of variables in elliptical coordinates and the transla-
tional addition theorems for Mathieu functions to generalize the
work done in Ref. [3] and obtain an exact series solution for free
vibrations of an elastic elliptic cylinder with shear diaphragm end
conditions, and containing an arbitrarily-located coaxial elliptical
cavity (see Fig. 1). The eccentric cylindrical components are
extensively used as the basic structural elements in a wide
variety of industrial and physical applications [3,16,17]. Thus, a
comprehensive dynamic characterization of such structures will
provide a real basis for the design engineer in assessing the
suitability of introducing cavities in these elements at each
situation. The proposed model is of both academic and technical
interest due to its inherent value as a canonical problem in
structural dynamics. It can particularly complement experi-
mental procedures in structural parameter identification, and
characterization/control of structural non-uniformities [18].
Lastly, the set of highly accurate converged solutions can not only
reveal the physical characteristics of the problem but also serve
as the benchmark in assessment of highly restrictive numerical or
asymptotic approaches [19–21].
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2. Formulation

2.1. Basic governing equations and field expansions

The cylinder is supposed to be fabricated of linearly elastic
homogeneous, and isotropic material with the classic stress–strain
relation given as [22]

σij ¼ λδijεkkþ2μεij; ð1Þ
where (λ;μ) are Lame constants, and δij is Kronecker delta func-
tion. Also, in the absence of body forces, the displacement field is
governed by the Navier's equation [23]:

λþ2μ
� �

∇ ∇∙uð Þ�μ∇� ∇� uð Þ ¼ ρ
∂2u
∂t2

; ð2Þ

where ρ is the material density, and the vector displacement u
can advantageously be decomposed into the gradient of a scalar
potential along with the curl of a vector potential as

u¼∇φþ∇�ψ; ð3Þ
where the vector potential ψ is defined in terms of the scalar
shear wave potential pairs ðψ ; χÞ through the classical relation
[22–24]:

ψ¼∇� ψezþ∇� ð∇� χezÞ;
which automatically satisfies the zero divergence condition ∇∙ψ
¼ 0 (where, ez, is the unit vector in the z-direction, pointing along
the cylinder axis). The above (Helmholtz) decomposition (3)
allows one to manipulate the dynamic equation of motion (2) into

the following fully-uncoupled scalar wave equations

c2p∇
2φ¼ €φ;

c2s∇
2ψ ¼ €ψ ;

c2s∇
2χ ¼ €χ; ð4Þ

where c2p ¼ λþ2μ
� �

=ρ and c2s ¼ μ=ρ are the dilatational and dis-
tortional wave speeds in the elastic medium, respectively.

Taking advantage of the general elliptic cylindrical coordinate
system ξ;η; z

� �
; the displacement components, u¼ ðUξ;Uη;UzÞ;

may be written in terms of the compressional and shear wave
potentials as [24]:

Uξ ¼
1
h

∂φ
∂ξ

þ ∂2ψ
∂ξ∂z

� 1
c2s

∂3χ
∂t2∂η

� �
;

Uη ¼ 1
h

∂φ
∂η

þ ∂2ψ
∂η∂z

þ 1
c2s

∂3χ
∂t2∂ξ

� �
;

Uz ¼ ∂φ
∂z

� 1
c2s

∂2ψ
∂t2

þ∂2ψ
∂z2

; ð5Þ

and with the relevant stress–displacement relations given as [22]:

σξξ ¼
λþ2μ

h

� �
∂Uξ

∂ξ
þλ
h
∂Uη

∂η
þλ

∂Uz

∂z
þλc2 sinh 2ξ

� �
2h3

Uξ

þ λþ2μ

2h3

� �
c2 sin 2η

� �
Uη;

σξη ¼
μ
h

∂Uξ

∂η
þ∂Uη

∂ξ
�c2 sinh 2ξ

� �
2h2

Uη�
c2 sin 2η

� �
2h2 Uξ

" #
;

σξz ¼ μ
∂Uξ

∂z
þ1
h
∂Uz

∂ξ

� �
;

σzz ¼ λ
h
∂Uξ

∂ξ
þλ
h
∂Uη

∂η
þ λþ2μ
� �∂Uz

∂z
þλc2 sinh 2ξ

� �
2h3 Uξ

þ λþ2μ

2h3

� �
c2 sin 2η

� �
Uη; ð6Þ

where h2 ¼ c2 sinh2 ξ
� �þ sin 2 η

� �h i
is the scale factor.

Now, consider a finite-length elliptical cylinder of the aspect
ratio a2=b2 with the associated elliptic coordinate system
ðξ2;η2; z2Þ, and containing an arbitrarily located elliptical cavity of
aspect ratio a1=b1 with the associated elliptic coordinate system
ðξ1;η1; z1Þ, where the triad ðe;θ1;θ2Þ denotes the cavity location/
orientation, as depicted in Fig. 1. The foci of the inner/outer

elliptical boundaries ξ1;2 ¼ ξI;O are located at the coordinates xj ¼

7cj ¼ 7 a2j �b2j
� �1=2

; yj ¼ 0 (j¼1,2) in the reference frame Ojxjyjzj,
with the associated semi-major and semi-minor axes a1;2 ¼
c1;2coshðξI;OÞ, and b1;2 ¼ c1;2sinh ξI;O

� �
. Assuming harmonic time

variations, one can recast the uncoupled wave Eq. (4), in the ðξ1;
η1; zÞ coordinate system as [4]:

∂2φ

∂ξ21
þ∂2φ
∂η21

 !
þ2qp1 cosh 2ξ1

� �� cos 2η1
� �� 	

φ¼ 0;

∂2ψ

∂ξ21
þ∂2ψ

∂η21

 !
þ2qs1 cosh 2ξ1

� �� cos 2η1
� �� 	

ψ ¼ 0;

∂2χ

∂ξ21
þ∂2χ
∂η21

 !
þ2qs1 cosh 2ξ1

� �� cos 2η1
� �� 	

χ ¼ 0; ð7Þ

where qp1 ¼ k2pc
2
1=4, qs1 ¼ k2s c

2
1=4 and k2p ¼ω2=c2p�γ2, k2s ¼ω2=c2s �

γ2, are the longitudinal and transverse wave numbers;ω is the fre-
quency, and γ is the separation constant. Consequently, the general
displacement potential solutions in the finite cylindrical domain may
be expanded as proper combinations of even and odd ordinary
Mathieu functions of first kind (i.e., cen; senÞ alongside even and odd
modified Mathieu functions of first and second kinds (i.e., Jen; Jon;

Fig. 1. Problem geometry.
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