FISEVIER

Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Original article

Design, synthesis, *in silico* molecular docking and biological evaluation of novel oxadiazole based thiazolidine-2,4-diones *bis*-heterocycles as PPAR- γ agonists

Syed Nazreen ^a, Mohammad Sarwar Alam ^{a, *}, Hinna Hamid ^a, Mohammad Shahar Yar ^b, Syed Shafi ^a, Abhijeet Dhulap ^c, Perwez Alam ^d, M.A.Q. Pasha ^d, Sameena Bano ^a, Mohammad Mahboob Alam ^a, Saqlain Haider ^a, Yakub Ali ^a, Chetna Kharbanda ^a, K.K. Pillai ^e

- ^a Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
- ^b Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
- ^c CSIR Unit for Research and Development of Information Products, Pune 411038, India
- ^d Functional Genomics Unit, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
- ^e Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University) New Delhi 110 062, India

ARTICLE INFO

Article history:
Received 30 May 2014
Received in revised form
24 August 2014
Accepted 4 September 2014
Available online 16 September 2014

Keywords: 2,4-Thiazolidinedione 1,3,4-Oxadiazole Antidiabetic PPAR-γ Hepatotoxicity Cardiotoxicity

ABSTRACT

A library of novel 1,3,4-oxadiazole and 2-4-thiazolidinedione based *bis*-heterocycles **7** (\mathbf{a} - \mathbf{r}) has been synthesized which exhibited significant PPAR- γ transactivation and blood glucose lowering effect comparable with the standard drugs Pioglitazone and Rosiglitazone. Compounds **7m** and **7r** did not cause body weight gain and were found to be free from hepatotoxic and cardiotoxic side effects. Compounds **7m** and **7r** increased PPAR- γ gene expression by **2.10** and **2.00** folds, respectively in comparison to the standard drugs Pioglitazone (**1.5** fold) and Rosiglitazone (**1.0** fold). Therefore the compounds **7m** and **7r** may be considered as potential candidates for development of new antidiabetic agents.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Type 2 diabetes is a metabolic disorder which due to insulin resistance and impaired insulin secretion leads to hyperglycemia. Patients with type 2 diabetes suffers from several complications such as neuropathy, nephropathy, retinopathy, cardiovascular diseases and atherosclerosis [1,2]. In normal humans, up to 80% of insulin-stimulated glucose disposal occurs in the skeletal muscle, a major site of insulin resistance in type 2 diabetes [3].

2,4-thiazolidinediones (TZDs) are an important class of compounds that enhances insulin action (insulin sensitizers) and

Abbreviations: TZD, thiazolidinediones; STZ, streptozotocin; ALT, alanine transaminase; AST, aspartate transaminase; ALP, alkaline phosphatase; RT, reverse transcription; PCR, polymerase chain reaction.

E-mail addresses: msalam@jamiahamdard.ac.in, msalam5555@gmail.com (M.S. Alam).

promote glucose utilization in peripheral tissues [4]. These are high-affinity ligands of peroxisome proliferator activated receptor- γ [5]. PPAR- γ , a member of a large family of ligand-activated nuclear hormone receptors is an important drug target for regulating glucose metabolism [6–9]. It increases insulin sensitivity in the adipose, muscle and hepatic tissues [10,11]. It leads to the channeling of fatty acids into adipose tissue and reducing their concentration in the plasma and thus alleviating insulin resistance and improving plasma glucose levels effectively [12–14]. 1,3,4-oxadiazoles are another important class of heterocyclic compounds which are known for a number of important pharmacological activities like hypoglycaemic, hypolipidemic, antimicrobial, antiinflammatory, analgesic, antimitotic and anticonvulsive activities [15–22].

Considering the biological importance of 2,4-thiazolidinediones and 1,3,4-oxadiazoles, we have conjugated thiazolidinediones with 1,3,4-oxadiazole under one construct through a methylene linkage to enhance the blood glucose lowering effect and minimize the side

^{*} Corresponding author.

Reagents and conditions: (a) MeOH, H_2SO_4 , Reflux, 1-2 h; (b) NH_2NH_2 . H_2O , Abs. alcohol, 6-8 h; (c)EtOH, NaOH, 0-(-5) °C, 10-12 h; (d) POCl₃, RT, 10-12 h.

Compds	R_2	R	Compds	R_2	R
7a	н	Н	7j	3-OMe	2-OEt
7b	3-OMe	н	7k	Н	Phenyl
7c	3-OEt	н	71	Н	-O-CH ₂ -2,6-diCI
7d	3,5 DiMe	Н	7m	Н	Н
7e	Н	4-CI	7n	н	4-CI
7f	3-OMe	4-CI	7o	Н	4-Br
7g	н	4-Br	7p	Н	2-OEt
7h	3-OMe	4-Br	7q	-5-Br	н
7i	Н	2-OEt	7r	Н	-O-CH ₂ -2,6-diCl

Scheme 1. Synthetic route for novel 1,3,4-oxadiazole-thiazolidine-2,4-diones based bis-heterocycles.

effects. We herein report for the first time, the synthesis and *in silico* molecular docking studies of oxadiazole and thiazolidinedione based *bis*-heterocycles **7** (**a**–**r**) against PPAR- γ target. The compounds showing good docking score (>-7.20) were screened for their *in vitro* PPAR- γ transactivation activity. Compounds **7b**, **7h**, **7k**, **7m** and **7r** showing significant PPAR- γ transactivation activity were further evaluated for their *in vivo* antidiabetic activity and hepatotoxicity. Two compounds **7m** and **7r** showing the most potent *in vitro* and *in vivo* antidiabetic activity were finally evaluated for

their cardiotoxic risk evaluation as well as effect on PPAR- γ gene expression.

2. Results and discussion

2.1. Chemistry

Treatment of different aromatic acids 1 (a-e) with MeOH in presence of a few drops of conc. H_2SO_4 yielded methyl esters of

Download English Version:

https://daneshyari.com/en/article/7800463

Download Persian Version:

https://daneshyari.com/article/7800463

<u>Daneshyari.com</u>