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a b s t r a c t

By employing the first order shear deformation plate theory and the Bloch–Floquet theorem, the
dispersion equation of flexural wave in the periodic composite plate structure with piezoelectric patches
is derived and solved by the use of the differential quadrature element method. Moreover, wave modes
for the dispersion curves of the considered periodic plate are compared with those of a homogeneous
plate, from which the reason of the frequency band gap is revealed. Then, a comprehensive parametric
study is conducted to highlight the influences of the physical parameters and the geometrical
parameters on the frequency band gaps. The results show that the method is efficient and accurate
and the bandwidth can be enlarged by changing the physical and geometrical parameters. The special
band gap property of periodic plate structure has many potential applications in wave/vibrations
attenuation areas for mechanical, aerospace and civil engineering structures.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Periodic composite materials or structures are widely used in
many engineering fields. Over the past several decades, the static
and dynamic performances of periodic composite plate structures
have been extensively investigated [1,2]. By applying the tolerance
averaging method developed by Woźniak and Wierzbicki [3],
Jędrysiak [4,5] investigated the dynamic behavior of periodic
plates, in which the effect of the periodicity cell size on the overall
plate behavior is analyzed in the free vibration problem. Using the
concept of a representative volume element (RVE) and applying
appropriate periodic boundary conditions, Würkner et al. [6,7]
developed a numerical homogenization technique to derive the
effective material properties of unidirectional periodic fiber com-
posite with imperfect interface conditions between the reinforce-
ment and the filler. By combining the recently proposed finite-
volume direct averaging micromechanics (FVDAM) theory [8] with
the Particle Swarm Optimization (PSO) algorithm, Tu and Pindera
[9] presented a new homogenization-based computational tech-
nology for the identification of optimal bio-inspired material
architectures (periodic bio-material) that mimic the mechanical
response of a biological tissues with wavy microstructures. Using a

modified version of the asymptotic expansion homogenization
method, Chatzigeorgiou et al. [10] and Tsalis et al. [11] studied the
effective thermomechanical properties of composites with cylind-
rical periodicity and generalized periodicity in the microstruc-
tures. Based on multi-node elements whose shape functions are
computed numerically by means of an auxiliary fine scale dis-
cretization of the element itself, Casadei [12] and Casadei et al. [13]
presented a geometric multi-scale finite element method
(GMsFEM) for predicting the static and dynamic response of
heterogeneous materials and structures. Using the asymptotic
homogenization techniques, Andrianov et al. [14] provided a
detailed investigation on the analysis of viscoelastic-matrix fibrous
composites with square-lattice reinforcement and their effective
properties.

In 1993, a special kind of periodic composite structure, named
phononic crystal, is proposed for the first time by Kushwaha et al.
[15] in the solid-state physics. These hetero structures exhibit a
fascinating property, called frequency band gap, in which waves or
vibrations are forbidden by the periodic composite structure [16–
18]. The physical meaning and possible applications of such
dispersion property have got considerable attention by a large
number of scientists and engineers [19,20]. For example, Andria-
nov et al. [21] presented an detail application of the higher order
asymptotic homogenization method (AHM) to the study of wave
dispersion in periodic composite materials, from which it is found
that successive reflections and refractions of the waves at the
component interfaces lead to the formation of a complicated

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

http://dx.doi.org/10.1016/j.ijmecsci.2015.06.014
0020-7403/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author at: School of Civil Engineering, Beijing Jiaotong Univer-
sity, Beijing 100044, China. Tel.: þ86 10 51684948.

E-mail address: chengzb@bjtu.edu.cn (Z.B. Cheng).

International Journal of Mechanical Sciences 100 (2015) 112–125

www.sciencedirect.com/science/journal/00207403
www.elsevier.com/locate/ijmecsci
http://dx.doi.org/10.1016/j.ijmecsci.2015.06.014
http://dx.doi.org/10.1016/j.ijmecsci.2015.06.014
http://dx.doi.org/10.1016/j.ijmecsci.2015.06.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2015.06.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2015.06.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2015.06.014&domain=pdf
mailto:chengzb@bjtu.edu.cn
http://dx.doi.org/10.1016/j.ijmecsci.2015.06.014


sequence of the pass and stop frequency bands when the wave-
length of a traveling signal becomes comparable with the size of
heterogeneities. By using the AHM, Andrianov et al. [22,23] also
studied propagation of strain waves in nonlinear elastic media
with microstructure. In the work, the geometrical nonlinearity is
described by the Cauchy–Green strain tensor and the physical
nonlinearity is described by elastic potential. In the case of weak
nonlinearity, an asymptotic solution is developed and a number of
nonlinear phenomena are detected, such as generation of high-
order modes and localization. Bacigalupo and Gambarotta [24,25]
proposed a second-order computational homogenization method
to derive the overall constitutive moduli and inertia properties,
and evaluated the influences of the material characteristic lengths
on the structural response and the propagation of elastic waves in
periodic masonry structure. Ruzzene and his co-authors [26,27]
developed a perturbation approach for analyzing dispersion and
group velocity in nonlinear periodic structures. Unlike other
perturbation techniques commonly used to study continuous
nonlinear systems, the proposed approach is valid for both large
and small wavelengths in the discrete setting. And by using the
perturbation approach, the amplitude-dependent band gaps and
wave directivity in the anisotropic setting are identified for two-
dimensional weakly nonlinear periodic structures. Based on the
first-order shear deformable plate theory, Hsu and Wu [28]
developed an efficient formulation to calculate and discuss the
characteristics of Lamb waves in periodic composite plates.
Further, the method is applied to study the propagation of Lamb
waves in locally resonant periodic composite plates [29]. With the
help of the center finite difference method (CFDM), Zhou et al. [30]
analyzed the frequency band gaps of a periodically stiffened thin
plate (PSTP) structure. Later on, they developed a simplified super
element method (SSEM) to investigate the effects of the material
damping on the flexural vibration characteristic of the periodically
stiffened-thin-plate [31]. Additionally, various ways for adjusting
the frequency band gap were already described in the literature
for periodic composite structures [32,33]. The application of smart

materials for adjusting the frequency band gaps of periodic plate
structures has also received great attention [34,35].

In order to analyze the frequency band gap property of periodic
composite structure reasonably, various numerical and theoretical
methods have been successfully developed, such as the widely-
used plane wave expansion method (PWE), the multiple scattering
theory method (MST), the finite difference time domain method
(FDTD), the transfer matrix method (TM) and so on. However, the
PWE method encounters convergence problems when the peri-
odic material has a large elastic mismatch [36]; the MST method
has a limitation in studying periodic materials with overlap
scatters [37]; the FDTD method is very memory and CPU-time
intensive to satisfy the stability condition [38]; the TM method
cannot be used to calculate the dispersion curves of two-
dimensional and three-dimensional periodic plate structure.
Therefore, alternative computational methods are always
expected. Differential quadrature method (DQM) has been tested
to be an efficient numerical method for solving both linear and
nonlinear partial differential equations, and it has the potential to
become an alternative to the conventional numerical methods
[39,40]. In 2009, Xiang and Shi [37] extended the DQEM to the
analysis of flexural vibration frequency band gaps of periodic
beams and demonstrated that the method is very accurate and
simple. Furthermore, they developed the DQEM to analyze the
band structures and dynamic response of a periodic Timoshenko
beam resting on a Pasternak foundation [41]. However, the DQEM
has not been used to study the dispersion structures of two-
dimensional and three-dimensional periodic structures. Therefore,
the main purpose of the present work is to develop the DQEM to
calculate the dispersion curves of flexural wave in two-
dimensional periodic plate structures and to discuss the frequency
band gap property of the periodic plate structure with piezo-
electric patches.

The paper is organized as follows. In Section 2, the governing
equations for the flexural wave propagating in the composite
periodic plate with piezoelectric patches is developed by using
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Fig. 1. Illustration of (a) an infinite periodic plate with piezoelectric patches, (b) a typical unit cell, and (c) the bending moments and shear forces of the plate.
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