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a b s t r a c t

This study presents a semi analytical closed-form solution for governing equations of thin skew plates
with various combination of clamp, free and simply supports subjected to uniform loading rested on the
elastic foundations of Winkler and Pasternak. The governing forth-order partial differential
equation (PDE) of two-variable function of deflection, w(X,Y), is defined in Oblique coordinates system.
Application of EKM together with the idea of weighted residual technique, converts the forth-order
governing equation to two ODEs in terms of X and Y in Oblique coordinates. Both resulted ODEs, are then
solved iteratively in a closed-form manner with a very fast convergence. Finally deflection function is
obtained. It is shown that some parameters such as angle of skew plate and stiffness of elastic foundation
have an important effect on the results. Also it is investigated that shear stresses exist considerably in
skew plates comparing to the corresponding rectangular plates. Comparisons of the deflection and
stresses at the various points of the plates show very good agreement with results of other analytical and
numerical analyses.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Kerr [1] developed the idea of the well-known Kantorovich
method [2] to obtain highly accurate approximate closed-form solu-
tion for torsion of prismatic bars with rectangular cross-section. The
method employs the novel idea of Kantorovich to reduce the govern-
ing partial differential equation of a two-dimensional (2D) elasticity
problem to a double set of ordinary differential equations. Since then,
the Extended Kantorovich Method (EKM) extensively has been
applied for various 2D elasticity problems in Cartesian coordinates
system. Among these applications, one can refer to eigenvalue
problems [3], buckling [4] and free vibrations [5] of thin rectangular
plates, bending of thick rectangular isotropic [6,7] and laminated
composite [8] plates and free-edge strength analysis [9]. Most recent
EKM based articles include vibration of variable thickness [10] and
buckling of symmetrically laminated [11] rectangular plates. Accuracy
of the results and rapid convergence of the method together with
possibility of obtaining closed-form solutions for ODE systems have
been discussed in these articles and others [12]. Finally, a few research
consider polar coordinates e.g. using EKM for sector plates [13]. All
these applications of EKM, are devoted and restricted to the problems
in the Cartesian and polar coordinate systems. The authors of the

present paper, for the first time applied EKM in Oblique coordinate
system for bending of skew plates under clamp boundary conditions
without considering foundations and stress analysis [14]. Based on the
other solution methods, several research have studied bending,
buckling, vibration and other analysis for skew plates in term of
Oblique coordinate system [15–20]. Winkler and Pasternak founda-
tions are considered in the design of structures rested on elastic
mediums. Winkler model considers the foundation as a series of
springs which do not have any interaction with each other. More
advanced models like Pasternak simulate the coupling between these
springs too [21,22].

This study aims to examine the applicability of the EKM to obtain
highly accurate approximate closed-form solutions for 2D elasticity
problems in Oblique coordinate system. Applying Extended Kantor-
ovich Method (EKM) with the aid of a weighted residual technique
(Galerkin method), the governing PDE, is converted to two
uncoupled ordinary differential equations (ODE) of f(X) and g(Y).
Then an initial guess function is considered for one of those functions
to obtain the constants of the ODE of the other function. After solving
the first ODE, constants of the second ODE are achieved. Then the
second ODE is solved for obtaining the first ODE's constants. These
iterations continues unless a good convegence is achieved. In every
iteration step, exact closed-form solutions are obtained for two ODE
systems. Deflection and stress analysis of thin isotropic skew plates
with a various combinations of clamp, free and simply supports
subjected to uniform loading and resting on the Winkler and
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Pasternak foundations as Fig. 1, is considered. Comparisons of the
deflections and stresses at the various points of the skew plate show
very good agreement with the results of other valid literatures and
FEM analysis of ANSYS code. Discussions reveals the existence of
shear stresses in skew plates comparing to the corresponding
rectangular plates.

2. Governing equations

If no axial force exists, differential equation of motion is
expressed as [23]

∂2Mx

∂x2
þ2

∂2Mxy

∂x∂y
þ∂2My

∂y2
þqðx; yÞ�k0wðx; yÞþk1∇2wðx; yÞ ¼ 0 ð1Þ

and in terms of w as

∇4wðx; yÞ ¼ qðx; yÞþk0wðx; yÞ�k1∇2wðx; yÞ
D

ð2Þ

Eq. (2) is the governing equation for a thin plate, in which w(x,
y) is the deflection function, q is the applied distributed load, D is
flexural rigidity for isotropic plates, k0 and k1 are the stiffness of
Winkler and Pasternak foundation respectively. Having just
Winkler foundation it is enough to equal k1 to zero. Now,
consider a thin skew plate with dimensions of 2a�2b as Fig. 1.
For a clamp–support, deflection (w) and its first derivative with
respect to the normal direction of the boundary must be
vanished. For a simply-support, deflection and its second deriva-
tive with respect to the normal direction of the boundary must be
vanished. Considering Fig. 1, for example for SSSC boundary
conditions (S and C represent simply and clamp respectively)
we have

w¼ d2w=dx2 ¼ 0 for x¼ 0; x¼ 2a

w¼ d2w=dy2 ¼ 0 for y¼ 0 and w¼ dw=dy¼ 0 for y¼ 2b ð3Þ
Governing Eqs. (1) and (2) must be converted from Cartesian

coordinates system (x,y) to Oblique coordinates system (X,Y) as it
is shown in Fig. 1. The relations between Cartesian(x,y) and
Oblique(X,Y) are

X ¼ x�y tan φ and Y ¼ y= cos φ ð4Þ
Consequently operator ∇2 in Cartesian coordinates could be

converted to Oblique coordinates as ∇2

∇2 ¼ 1
cos φ

∂2

∂X2�2 sin φ
∂2

∂X∂Y
þ ∂2

∂Y2

� �
ð5Þ

Also, ∇4 becomes

∇4 ¼ 1
cos 4φ

∂4

∂X4þ2 1þ2 sin 2φ
� � ∂4

∂X2∂Y2

�

�4 sin φ
∂4

∂X3∂Y
þ ∂4

∂X∂Y3

� �
þ ∂4

∂Y4

�
ð6Þ

For the governing Eq. (2) in Oblique coordinates system we
have

D∇4wðX;YÞþk0wðX;YÞ�k1∇
2wðX;YÞ ¼ qðX;YÞ ð7Þ

3. Iterative solution by EKM

According to the Extended Kantorovich Method (EKM) [1], the
two-variable-function of the plate deflection, w(X,Y) is assumed as

multiplication of different single variable functions as

wijðX;YÞffi f iðXÞUgjðYÞ ð8Þ
where f iðXÞ and gjðYÞ are unknown functions to be determined and
subscripts i and j denote number of iterations. Using Eq. (6),
expanding of Eq. (7) is

D∇4wþk0wðX;YÞ�k1∇
2wðX;YÞ ¼ qðX;YÞ

D
cos 4φ

∂4w
∂X4 þ

�
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� � ∂4w
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∂4w
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þ
�

∂4w
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�
∂4w
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�
þk0w

� k1
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∂2w
∂X2 �2 sin φ

∂2w
∂X∂Y

þ∂2w
∂Y2

� �
¼ qðX;YÞ ð9Þ

By considering assumption of Eq. (8), we have

cos 4φ
� 	
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For Eq. (7), according to the Galerkin weighted residual
method, we have [13]Z 2a

0

Z 2b

0
ðD∇4w�qþk0w�k1∇

2wÞδwdXdY ¼ 0 ð11Þ

Now, for a prescribed function of gjðYÞ, j¼0 and referred to Eq.
(8), δw becomes

δw¼ g0ðYÞUδf i ð12Þ
Substitution of Eq. (8) into Eq. (11) in conjunction with Eq. (12)

leads toZ 2a

0

Z 2b

0
D∇4ðf i Ug0Þ�qþk0ðf i Ug0Þ�k1∇

2ðf i Ug0Þ
� �

g0dY

" #
δf idX ¼ 0

ð13Þ
Based on the existing rules in the Variational principle, Eq. (13)

is satisfied if the expression in the bracket is vanished

Z 2b

0
D∇4ðf i Ug0Þ�qþk0ðf i Ug0Þ�k1∇

2ðf i Ug0Þ
� �

g0dY ¼ 0 ð14Þ

Fig. 1. Skew plate in Oblique coordinate (X,Y) resting on the elastic foundations
with the stiffness of k.
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