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a b s t r a c t

For the problem of a functionally graded thick-walled tube subjected to internal pressure, we have
already presented the elasticity solution based on the Voigt method with the assumption of a uniform
strain field within the representative volume element. This paper discusses the thermoelastic problem of
the functionally graded thick-walled tube subjected to both axisymmetric mechanical and thermal loads,
and gives the solution in terms of volume fractions of constituents. We assume that the tube consists of
two linear elastic constituents and the volume fraction of one phase is a power function varied in the
radial direction. The theoretical solutions of the displacement and the stresses are presented under the
assumption of a uniform strain field within the representative volume element. Comparisons of the
theoretical solutions and the finite element analysis demonstrate the validity of the assumption. Based
on the relation of the volume average stresses of constituents and the macroscopic stresses of the
composite material in micromechanics, the present method can avoid the assumption of the distribution
regularities of unknown overall material parameters appeared in existing papers. Further, the present
method is valid for the materials with different Poisson's ratios of constituents. The effects of the volume
fraction, the ratio of two thermal expansion coefficients and the ratio of two thermal conductivities on
the displacement and stresses are systematically studied.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are composite materials
formed of two or more constituent phases with a continuously
variable composition. FGMs have a lot of advantages that make them
attractive in potential applications, including a potential reduction of
in-plane and transverse through-the-thickness stresses, an improved
residual stress distribution, enhanced thermal properties, higher
fracture toughness, and reduced stress intensity factors [1].

In the last two decades, FGMs have been widely used in engineer-
ing applications, particularly in high-temperature environment, and
power transmission equipment. The functionally graded thick-walled
tube is a kind of typical structures such as pressure vessels and
cylinders that are utilized in reserving or transferring chemical gas, oil,
etc. Thus the thermoelastic problems of thick-walled tubes have been
studied by many researchers. Some researchers presented an exact
solution for thermal stresses of FGM cylinders [2] and spheres [3]
whose Young's modulus and thermal expansion coefficient vary
linearly with the radius. However, the linear function assumption is

not sufficient for describing more complicated cases. To capture
Young's modulus and thermal expansion coefficient of the FGM
thick-walled tube more precisely, some researchers [4–18] proposed
another assumption of Young's modulus such as the form of
EðrÞ ¼ E0rm1 (E0 and m1 are material constants, r is the radial coordi-
nate) and thermal expansion coefficient such as the form of
αðrÞ ¼ α0rm2 (α0 and m2 are material constants). For convenience,
thermal conductivity was mostly assumed in the form of
kðrÞ ¼ k0rm3 (k0 and m3 are material constants). Furthermore, Ozturk
and Gulgec [19] proposed the three variable controlled material
properties such as Young's modulus in the form of

EðrÞ ¼ E0 1�nEðr=bÞkE
h i

of (E0, nE and kE are material constants, b is

the outer radius), thermal expansion coefficient in the form of

αðrÞ ¼ α0 1�nαðr=bÞkα
h i

(α0 , nα and kα are material constants) and

similar form of the thermal conductivity.
In the above-mentioned works, varying material properties are

usually treated as specific gradient variation such as linear form or
power-law form. Nevertheless, it is difficult to satisfy the engineer-
ing manufacture in practice. Hence, authors [20,21] proposed a new
method which assuming the material properties in terms of the
volume fraction of one phase such as Young's modulus in the form
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of E(r)¼EcVcþEmVm (Ec and Em are material constants, Vc and Vm are
volume fractions) and the thermal expansion coefficient in the form
of αðrÞ ¼ αcVcþ αmVm (αc andαm are material constants). Though
some researchers [22,23] considered the variations of both Young's
modulus and the thermal expansion coefficient by using the Mori–
Tanaka method, they did not obtain the theoretical solutions due to
the complicated calculation of the equilibrium equation presented
in their work.

Recently, the Carrera Unified Formulation (CUF), which was
developed by Carrera for multi-layered structures [24–28], is
extended to also account for functionally graded shells under
mechanical and thermal loadings. The Principle of Virtual Dis-
placements (PVD) has been proposed in [29] and the extension to
Reissner's Mixed Variational Theorem (RMVT) has been given in
[30]. The thermo-mechanical bending problem of functionally
graded plates has already been proposed in [31]. Considering the
temperature as an external load [32], the static response of
functionally graded shells is studied and the governing equations
are derived from the Principle of Virtual Displacements.

In most actual systems, the overall elastic modulus, the thermal
expansion coefficient, and the thermal conductivity of the FGM tube
cannot be found directly, however, they can be obtained in terms of
their properties of constituents and the volume fractions in a certain
regulation.

In this paper, we first define a volume fraction varied radially
rather than the assumption of Young's modulus, thermal expan-
sion coefficient and thermal conduction coefficient of the FGM
tube. Using the elasticity solution in [33], the thermoelastic
behavior of the functionally graded thick-walled tube subjected

to axisymmetric mechanical and thermal loads is investigated in
this work. In Section 2 the basic equations of the FGM long tube
and the analysis of thermoelastic mechanical behaviors of the tube
are described. Section 3 gives the FEM results and discusses the
effect of parameter n, the ratio of two thermal expansion coeffi-
cients and the ratio of two thermal conductivities. Conclusions are
given in Section 4.

2. Theoretical analysis

A state of axial symmetry is considered in the problem of a
FGM thick-walled tube subjected to axisymmetric mechanical and
thermal loads on its inner and outer surfaces (Fig. 1). Cylindrical
polar coordinates r;θ; z

� �
are used and the inner and outer radii

of the thick-walled tube are designated as a and b, respectively.
The tube consists of two linear elastic materials A and B, and

the volume fraction cðrÞA ½0; 1� of material A is given by

cðrÞ ¼ c0 1�kðr=bÞn� � ð1Þ

where, r is the radius, c0, k and n are the material parameters.

2.1. Heat transfer

To obtain desired thermal stresses in the FGM long tube, it is
natural to first determine temperature distribution in the thick-
wall tube. To this end, we need to consider a steady-state heat
conduction problem without internal heat source. The heat equa-
tion for steady-state heat conduction with no heat source reads

1
r
rkðrÞT 0ðrÞ� �0 ¼ 0 ð2Þ

and the boundary conditions at the inner and outer surfaces are

C11TðaÞþC12T
0ðaÞ ¼ f 1

C21TðbÞþC22T
0ðbÞ ¼ f 2 ð3Þ

where the prime denotes the derivative with respect to r, T(r) is
the radial temperature variation between the tube and the
ambient condition, k(r) is the thermal conductivity, Cij (i, j¼1, 2)
are the constant thermal parameters relative to the conduction
and convection coefficients, and fj (j¼1, 2) are known constants on
the inner and outer radii, respectively.

Nomenclature

a inner radius
b outer radius
r radial coordinate
c(r) volume fraction of material A
c0, k, n material parameters
pa, pb internal and external pressures
Cij (i, j¼1, 2) constant thermal parameters
fj (j¼1, 2) constants on the inner and outer radii
k(r) thermal conductivity
ki (i¼1, 2) thermal conductivity of the component
T(r) temperature variation
Ci (i¼0, 1, 2) constants in temperature function
αi (i¼1, 2) thermal expansion coefficient of the component
λi, μi (i¼1, 2) Lamé constants of the component

Ei, vi (i¼1, 2) Young's modulus and Poisson's ratio of the
component

εðiÞr , εðiÞθ radial and circumferential strains of the component
σðiÞ
r , σðiÞ

θ , σðiÞ
z radial, circumferential and axial stresses of the

component
σr , σθ ,σz average radial, circumferential and axial stresses of

the tube
u radial displacement
x a new variable about r
F hypergeometric function
α, β, δ coefficients in hypergeometric function
Bi (i¼0, 1, 2) intergral constants
r non-dimensional radial coordinate
a, b non-dimensional inner and outer radii
u non-dimensional radial displacement
σij non-dimensional stresses

a

b
pa

pb

Tb
Ta

Fig. 1. The cross-sectional contour of a long FGM tube subjected to mechanical and
thermal loads.
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