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In this paper, the identification of the time-dependent blood perfusion coefficient in the bioheat
equation is considered as an inverse heat source problem with nonlocal boundary and integral energy
over-determination conditions. The boundary element method (BEM) based on using the fundamental
solution for the heat equation is employed, together with either the second-order Tikhonov regulariza-
tion combined with finite differences, or with a smoothing spline regularization technique for
computing the first-order derivative of a noisy function. A couple of benchmark numerical examples
are presented to verify the accuracy and stability of the solution.
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1. Introduction

The bioheat equation establishes a mathematical connection
between the tissue temperature and the arterial blood perfusion
which are the dominant components in human physiology, see
Trucu et al. [17]. It involves a blood perfusion coefficient whose
determination is of much interest [15].

In this paper, we consider the determination of the unknown
time-dependent blood perfusion coefficient for the bioheat equation
under nonlocal boundary and integral conditions. We mention that
time-dependent coefficient identification problems with nonlocal
boundary and/or integral overdetermination conditions have recently
attracted revitalizing interest, e.g. the reconstruction of a time-
dependent diffusivity [10], a blood perfusion coefficient [8], or a heat
source [9,4]. A simple transformation is used to reduce the bioheat
equation to the classical heat equation. This inverse problem has
already been proved to be uniquely solvable in Kerimov and Ismailov
[11], but no numerical reconstruction has been attempted. Therefore,
the purpose of this study is to devise a numerical stable method for
obtaining the solution of the inverse problem.

2. Mathematical formulation

Let us consider the inverse problem consisting of finding the
time-dependent blood perfusion coefficient function P(t) and the
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temperature of the tissue u(x,t), i.e. the pair (P(t), u(x,t)), from
the class C[0, T] x (C>1(Dy) n C"°(Dy)), where Dy = {(x,t)[0 <x < 1,
O0<t<T}=(0,1)x(0,T], T>0 is given, satisfying the one-
dimensional time-dependent bioheat equation [16]

Ur(X, 1) = Upe(X, 1) = P(Oux, ) +f(x,0),  (x,t) e Dr, ey

where f is a known heat source term, subject to the following
initial and boundary conditions:

ux,0)=¢kx), xe[0,1], 2)

—ux(0,t) =au(0,t), tel0,T], 3

u(0,t)=u(l,t), te[0,T], 4)
1

/ ux, ) dx=E(t), te[0,T], )

Jo

where the function ¢ is given and it denotes the initial tempera-
ture, « is a given constant heat transfer coefficient, and E
represents the mass or energy of the system. Note that the
nonlocal periodic boundary condition (4) is encountered in biolo-
gical applications [14], whilst the mass/energy specification (5)
models processes related to particle diffusion in turbulent plasma
[7], or heat conduction [1]. The physical constraint that the blood
perfusion P(t) is positive can also be imposed [12].

Note that the case a=0 has been dealt with in [9]. Herein, we
consider the case a0 whose unique solvability and local con-
tinuous dependence of the solution upon the data of the inverse
problem (1)-(5) have been established in [11]. Moreover, the
global continuous dependence of the solution upon the data can
also be established based on a Gronwall's-type inequality [6].
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Consider now the following transformation [2]:

V(x, t) = r(tu(x, t). (6)
Then the inverse problem (1)-(5) becomes

Ve =V +1(Of(x,0),  (x,6)eDr, (7
v(x,0)=gp(x), xe[0,f], 8)
v(0,t)=v(1,t), vx(0,t)+av(0,t)=0, te[0,T], 9)

with the transformed integral condition
1
/ v(x,t) dx =E(t)r(t), te[0,T]. (10)
0

We also have that r e C'[0, T], r(0) = 1, r(t) > 0, for t e [0, T]. Solving
the inverse problem (7)-(10) for the solution pair (r(t),v(x,t))
yields afterwards the solution pair (P(t),u(x,t)) for the inverse
problem (1)-(5) as given by

r'(t) VX, 0)
0 and u(x,t)= o

From Eq. (11) one can observe that the ill-posedness of the inverse
problem consists of the numerical differentiation of the noisy
function r(t) which would need regularization.

P(t) =

(x.t)eDr. 11

3. The boundary element method (BEM)

In this section, we apply the BEM to the one-dimensional
inverse problem (7)-(10), in order to approximate the solution
(r(t), v(x, t)) which in turn, via (11), leads to the original solution
(P(t),u(x,t)) of the inverse problem (1)-(5). Utilizing the BEM is
classical with the use of the fundamental solution for the heat
equation and Green's identities. The fundamental solution for the
heat equation (7) is given by

Ht-0 o &=y’
\/4n(t—1) At-7) )’
where H is the Heaviside step function. By applying this funda-

mental solution and Green's formula to the heat equation (7)
recast this as the boundary integral equation:

G(x,t,y,7)=

X, t,& 1) dr
£e{0,1}

POV, t)=/0 [G(x ten-2l (En-vE 2

dn(cf) dﬂ(é‘)

1
+ / Gex. £y, 0)v(y. 0) dy
JO

1 T
+ / / G, £.y. Or@f (. ) de dy, (x.6)€[0,1] x (0.T],
0 0
(12)

where (0)=n(1)=1, n(x)=1 for xe(0,1), and n is the outward
unit normal to the space boundary {0,1}. The boundaries {0} x
[0,T] and {1} x[0,T] are divided into N small time-intervals
[ti—1.t].j=1,N, with t;=jT/N,j=0,N, whilst the initial domain
[0,1] x {0} is divided into No small cells [x,_1,x,], k=1,No with
X =k/Ng,k=0,Ny. Using a piecewise constant BEM we assume
that

V(O t)= V(O fj)—'hoj,
—( t)_—(O £))=:qoj»
V(x,0) = V(X, 0) = p(Xy)=:py,  for

where Ej = (tj—l +fj)/2 and X = (X _1 +Xk)/2,j =1,N, k=1,Ny. For
the source term, the functions f(x, t) and r(t) are approximated to
be the piecewise constant functions:

fxo=fxt), r©)=rEp=r;

v(1,t) =v(1,Ej)=hyj,
av awv . -
%(Lt) =ﬁ(1, t)=qy;.

te(tji—1, 4. x € [Xe_1, Xk,

forte (tj_], tj].

Then the integral equation (12) can be approximated as

N
VX, t) = Z [AOj(Xa )qo; +Aqj(x, t)q1j_BOj(X7t)hOj_Blj(X>t)hlj]
i

N
+ ’2] Ci(x, oy + ‘Zl Dj(x,t)rj, (x,t)€[0,1] x (0, T],
k= j=

(13)

where the coefficients and the double integral source term are
given by

t;
Ajx.t= [ Geut.éq dr,

ti_1

ot
Bg-(x,t):(/[ 6(5)(Xt51)d1 £={0.1), 14)

X 1 N
Ck(x,t)z/ G(x,t,y,0) dy, D,-(x,t):/0 f@.tHA,x, ) dy. (15)

Note that the first three integrals in (14) and (15) can be evaluated
analytically [3], whereas the integral source term Dj(x,t) is
approximated by Simpson's rule of integration. Applying Eq. (13)
at the boundary nodes (0,f;) and (1,f;) for i=1,N yields the
system of 2N linear equations

Aq—Bh+Cyp+Dr=0, (16)

where

[Agj(0,T;) Aqj(0,E;)

| Ag(LT) Ayl t)LN -

BOJ(O, t1)+jéy
Boj(1,t;)

A=

B]](Ovtl)

B= N
Byj(1,E)+3 65

>

2Nx2N
c_ [ Ck(0, ;) D Dy(0. &)
| Ce(1, ) 2N><No, Dien ], o

q B _qoj:| B |:h0]:|
A P hj 2N
¢ =[pilny T =[]y, and 8; is the Kronecker delta symbol. We can

also collocate (9) and (10) as

hoj=hij.  doj=ahg. j=T.N, an

N _
eiﬂ':l ZO V(& E), i=1,N, (18)
No k=1

where e;:=E(t;). Using (13) and (18) yields

N z [ALg —Bih +Cip +Djr] = (19)

where

Al =Ag(Xi. T) AR Tlnsans Bl = [BojRks 1) ByjRi E)Inscans

Ci =i E)lnxng: Dk = [DjRper E)lncn»

Eliminating q and h from (16), (17) and (19) yields a linear system
of N equations

Xr=y, (20)

W =diag(eq, ..., en).

with N unknowns, where

—w,
No i

1 R i1 1 ! I
X=— 3 —(Ak—E(quLBk*))(A—a(BJrB*)) D+D;

S g e (At o
X—N—Okzl k=5 Bt B | A—— (B+B7) —Ck| @
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