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The integral equation formulation developed previously by the authors to study isothermal micro flows
under shear slip boundary condition is extended in this work to consider the case of non-isothermal
micro gas flows with thermal creep effects at finite Peclet numbers. The effect of thermal creep over the
flow patterns with and without considering the effect of shear slip is investigated in detail using a
boundary element method. In this work the boundary integral approaches for both fluid velocity and
temperatures fields are used to solve the problem of shear-driven cavity flow at finite Peclet number.
This is obtained by considering the diffusive-convective heat equation using the Dual Reciprocity
Method to transform the corresponding volume integral of the convective terms into equivalent surface

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Micro Electro Mechanical Systems (MEMS) based on the
thermal creep phenomenon, like Knudsen-type compressor and
gas vacuum pumps, can operate subject to temperature gradients
without moving parts [1]. Gas flows at micro scale conditions are
characterized by the Knudsen number [2], which is defined as the
ratio between the mean free path of the molecules, 1, and the
characteristic length scale of the flow, h, (the fluid gap in our case)

A
Kn= n @)
The Knudsen number provides a measure of how rarefied is the
gas flow and according to its magnitude four different formula-
tions of the governing equations and boundary conditions can be
defined [3]: The «classical continuum representation holds
when Kn < 10~ 3 described by the Navier-Stokes system of equa-
tions and the no-slip boundary conditions. As the fluid gap
decreases, the fluid moves into the slip regime; in the regime
1073 <Kn< 10!, the Navier-Stokes system of equations for the
flow motion remains valid in a continuum description, but a first
order slip boundary condition on the fluid solid interface becomes
relevant. At 10~ ! < Kn < 10! a transition regime appears, where a
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molecular behaviour is present and higher order corrections and
model variations are needed to estimate the flow behaviour. As Kn
varies, the Navier-Stokes system of equations requires the imple-
mentation of second-order slip boundary conditions to adequately
predict the flow behaviour; this approximation is valid only for
Kn<1. At higher Kn, the Navier-Stokes system of equations
should be replaced by other conservation equations, like quasi-
hydrodynamic (QHD) equations, quasi-gas-dynamic (QGD) equa-
tions or higher-order fluid dynamics models like the Burnett
equations [4]. The molecular approach is required for Kn > 10.
However, most of the micro gas flow applications reported in the
literature operate in the slip flow regime, satisfying the continuum
hypothesis (Navier-Stokes system of equations) with the corre-
sponding first-order slip boundary conditions [4].

In the simulation of micro-fluid gas flows, besides considering
the shear slip, with the tangential fluid velocity at the solid
boundaries proportional to the tangential projection of the wall
shear rate, the effect of thermal creep also needs to be considered,
where due to tangential temperatures gradients along the contour
boundaries of the gas are forced to slip over the solid surfaces from
colder to hotter regions [5]. The Maxwell boundary condition [6]
accounts for the slip velocity due to tangential shear rate and
tangential heat flux effects.

Maxwell boundary condition relates the tangential gas velocity,
i}, at the boundary contours, ie., the fluid velocity tangential to
the wall, to the tangential shear stress and the tangential heat flux.
In terms of a characteristic velocity U, the length scale h and a
characteristic pressure x U/h, the slip condition can be written in
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dimensionless form as

ul — Uy’ = Lys+Lsr(— ) @)
where UY is the wall velocity, q; = (—dT/dx;)s; is the dimensionless
tangential heat flux at the boundary contours, and

. au; ()Uj au; ()Llj
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is the tangential shear rate, where n; and s; are, respectively, the i
components of the normal and tangential vectors to a boundary
surface.

In expression (2), the coefficient Ls corresponds to the shear
slip [7] and the coefficient L to the thermal creep [4]. The
proportionality constant is called slip length, Ls; (dimensionless slip
length in this case), and represents the hypothetical outward
distance at the wall needed to satisfy the no-slip flow condition.
Additionally, Ly is a dimensionless constant that relates the
thermal creep effect with thermo physical properties defined at
the fluid-solid interface, like the intermolecular collision condi-
tion, the compressibility and the specific heat of the gas [4].

In the slip flow region, the energy equation is also subject to a
temperature jump condition at the boundary contours to account
for the thermal creep effect, [4], described by the following
boundary condition:

T —TY = Ly(—qp), “

with T as the fluid temperature, T as the wall temperature, and
G, =(T/ox;) n; as the dimensionless normal heat flux to the
surface and Ly is a constant coefficient. This boundary condition
was used by Lockerby and Reese [8] to provide a good agreement
in wall shear stress and heat flux with Direct Simulation Monte
Carlo (DSMC) results up to Kn=0.1. When Kn > 0.1 only qualita-
tive agreement can be reached and higher order boundary condi-
tions have to be wused [9]. However, in the range of
1073 <Kn < 10~! the boundary condition (2) in combination with
temperature jump condition (4) can be used to analyse several
micro gas flow applications [4].

In this work, an integral equation formulation based on the
normal and tangential projections of the direct boundary integral
representation formula for the Stokes velocity is employed to
numerically simulate the non-isothermal micro gas flows subject
to shear slip and thermal creep effects. A difficulty encountered
when extending this type of approach to non-isothermal condi-
tions with thermal creep effect arises when evaluating the
tangential derivative of the temperature integral representational
formula at the solid-fluid interface, resulting in a Cauchy singular
integral that needs to be evaluated in the sense of its principal
value. In this work, this singularity is removed by subtracting from
the original temperature integral equation the integral representa-
tion formulae of a known potential field, having at a given
collocation point the same field value and gradient of the original
temperature field. The resulting boundary integral formulation is
used to solve the problem of the shear-driven cavity flows at finite
Peclet number by considering the diffusive-convective heat equa-
tion using the Dual Reciprocity Boundary Element Method (DR-
BEM) to transform the corresponding volume integral of the
convective terms into equivalent surface integrals. The mentioned
subtraction of singularities approach is used to determine the
tangential derivative of the corresponding wall temperature.

2. Integral formulation for slip flow with thermal creep at
finite Peclet numbers

The Stokes velocity field at a point x in a closed domain 2 (with
boundary r) filled with a Newtonian fluid can be defined in terms

of the following Green's integral representation formula [10]:
cGou0~ [ Kyoeyuwidr+ [ uley)fionr=o. 5)

where c is a coefficient function depending only on the geometry
of I', and Kj; and ui are the fundamental solutions of the Stokes
system. The normal and tangential projections of the above
boundary integral formula can be obtained after multiplying
Eq. (5) by the local normal and tangential vectors n; and s;, at a
surface point, and expressing the velocity and surface traction
vectors in terms of their corresponding normal and tangential
components, (un, us) and (f,, f), i.e., Uj(X) = up(X)n; +Us(x)s; and
fi) =fnoni+fs(0s;, with u,=umn;, us=uys;, f,=fn and
fs =fjsj~

Using the boundary condition (2) into the corresponding
normal and tangential projections of the direct boundary integral
representation formula, the following surface integral equations
are obtained:

/r WY+ Fs0)s )T — /r Kyj(x.y)Ls fy)si0mxdr
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where U} = Uy'n;+Uy’s; and the last term on the right-hand side
of both equations accounts for the thermal creep due to the
tangential temperature gradient at the wall boundaries. As can
be observed, in our formulation we are neglecting natural convec-
tion effects due to the boundary temperature differences to focus
our attention only to the effect of thermal creep.

The limiting value of the integral kernels in (6) and (7), as the
radius r tends to zero, presents only logarithmic singularities
coming from the kernels t(x, y)n;(y)n;j(x) and wi(x, y)sj(y)si(x); for
more details see [11]. These two equations form a system of
surface integral equations for the unknowns (f,, f,). The corre-
sponding values of (f; , f,) are directly obtained from the relation
fi(x) = f,0on;(x) +f(X)s;(x). The solution of Eqgs. (6) and (7) under
the thermal creep condition requires the evaluation of the tem-
perature field, with the aim of obtaining the tangential tempera-
ture gradient, g, = 0T /0s, to account for the thermal creep effect at
the boundary contours.

3. Integral formulation for the normal heat flux

The temperature field is found by solving the steady state
energy equation

Pe (U .VT) = V2T ®

where Pe=hU/D is the Peclet number, and D the thermal
diffusivity coefficient.

Eq. (8) can be seen as a Poisson equation with a non-
homogenous term given by the convective component of the
above energy equation, whose integral representation formulae
can be found by applying Green's second theorem, leading to the
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