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a b s t r a c t

The purpose of this paper is to introduce the concept of hydraulic damage and its numerical integration.
Unlike the common phenomenological continuum damage mechanics approaches, the procedure
introduced in this paper relies on mature concepts of homogenization, linear fracture mechanics, and
thermodynamics. The model is applied to the problem of fault reactivation within resource reservoirs.
The results show that propagation of weaknesses is highly driven by the contrasts of properties in porous
media. In particular, it is affected by the fracture toughness of host rocks. Hydraulic damage is diffused
when it takes place within extended geological units and localized at interfaces and faults.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-scaling is the branch of science which describes homo-
genization and data assimilation. Homogenization predicts the
overall behavior of materials based on local considerations. Data
assimilation includes the opposite process which deduces the
description of local processes from the overall behavior of materi-
als. Multi-scaling to predict the constitutive behavior of geomater-
ials has been the subject of intensive research. This problem does
not necessarily refer to the transition from a particular unit of
length to another as often argued but it allows to predict the
behavior of geomaterials on the macro-scale (scale of homogene-
ity) from local micro-scale (scale of heterogeneities) and vice
versa. In the context of geomechanics, the micro-scale can capture
grains, agglomerates, rocks of different dimensions, and/or entire
geological layers. The objective of multi-scaling is to replace the
behavior of locally complex bodies by a fictitious homogeneous
material, which exhibits equivalent properties as the complex
bodies on the global scale (upscaling), or to derive locally complex
properties from a globally homogeneous material (downscaling).

In this spirit, we present a continuum hydraulic damage
approach based on simple concepts of linear fracture mechanics
and coherent classical homogenization techniques. We also intro-
duce a numerical implementation of this approach using the finite
element method. At a second stage we apply the developed

framework to the problem of fault reactivation within resource
reservoirs. The case study proposed herein is hypothetical. Yet, it
reflects a realistic scenario which could be encountered in
geothermal energy harnessing, carbon dioxide geo-sequestration,
hydraulic stimulation of shale gas reservoirs, and/or oil and gas
recovery.

2. Micro–macro scale description

2.1. Basic principles of homogenization

The purpose of this subsection is to provide a concise overview
on the basic principles of homogenization. A detailed survey can
be found in Zaoui [17]. The theory of homogenization predicts the
effective behavior of composite materials knowing their local
configurations, texture and morphology. The outcome of this
theory is valid as long as a representative volume element (RVE)
plays the same mechanical role as the equivalent homogeneous
medium (EHM). This means that the stress and strain fields Σ and
E, solutions of the boundary value problem on the EHM, must
coincide with the space average of rðxÞ and ϵðxÞ over any RVE
centered on x. The tensors rðxÞ and ϵðxÞ are, respectively, the stress
and strain that would have been obtained if the boundary value
problem was solved on the domain by taking into account all the
local morphologic complexities. The size of an RVE should
be (i) small enough compared to the structure to be studied and
(ii) big enough compared to the heterogeneities. This view is
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expressed quantitatively by the Hill–Mandel theorem as discussed
in the next subsections.

The homogenization theory relies considerably on the condi-
tions of homogeneous boundary conditions [8,9,17]. The condition
of homogeneous stress boundary condition stipulates that the sur-
face traction prescribed on the boundaries is given by Tg ¼Σ � n
where n is an outward normal unit vector. This condition shows
that the space average r of stress in the RVE coincides with Σ.
Similarly, the condition of homogeneous strain boundary condition
expressed as ug ¼ E � x shows that the space average ϵ ¼ E. Note
that this condition is acceptable as long as the heterogeneities are
small as compared to the RVE. Therefore, from the homogeneous
boundary conditions it can be shown that

ϵn ¼ 1
jΩj

Z
Ω
ϵnðxÞ dΩ¼ E and rn ¼ 1

jΩj
Z
Ω
rnðxÞ dΩ¼Σ ð1Þ

where jΩj is the volume of the RVE. The superscript (n) in the
above equation means that the stress and strain fields, which are
solutions of the boundary value problem, are not the only ones
that satisfy the equalities (1). Any stress and strain fields, that
satisfy stress equilibrium and compatibility with the boundary
conditions, are admissible. Homogeneous boundary conditions
also result in the Hill lemma which reads

rnðxÞ : ϵnðxÞ ¼ rn ðxÞ : ϵnðxÞ ¼Σ : E ð2Þ
The homogenization procedure requires either the deformation or
the stress to obey homogeneous boundary conditions. Therefore, it
is possible to obtain one of the following relationships:

ϵnðxÞ ¼AðEÞ or rnðxÞ ¼BðΣÞ ð3Þ
which express the local deformation as a function of the overall
strain or the local stress as a function of the overall stress. In
particular, if the behavior is assumed to be linear, Eq. (3) can be
rewritten in the following form:

ϵnðxÞ ¼AðxÞ : E or rnðxÞ ¼BðxÞ : Σ ð4Þ
The fourth order tensors A and B are known as the localization (or
concentration) tensors. Using Eqs. (1), it can be shown that they
verify AðxÞ ¼BðxÞ ¼ I, where I is the identity tensor. Alternating
the homogeneous boundary conditions which result in (4) and
applying Hooke's law locally shows that

Σ¼S : A : E ¼Shom : E or E¼C : B : Σ ¼Chom : Σ ð5Þ
where S and C are the stiffness and compliance tensors, respec-
tively. The subscript “hom” refers to the homogeneous or equiva-
lent property. The condition of equivalence of the homogeneous
boundary conditions is expressed by the so called Hill–Mandel
theorem:

Shom : Chom ¼ IþO dinc
drve

� �3

ð6Þ

which states that the equivalence is ensured when the character-
istic dimension of the inclusions dinc is small as compared to the
characteristic dimension of the RVE, drve. The equivalence is
ensured with an error of the third order with respect to the
above-mentioned ratio. For instance, if the representative volume
element is taken 3 times bigger than the dimension of the
heterogeneities, the overall elasticity properties can be estimated
with an error of the order 1%. This is important especially for
geological applications where continuum mechanics approaches
are used to describe complex local textures.

2.2. Effective properties of fractured media

In the last subsection, we recalled the basic principles of
homogenization including the homogeneous boundary conditions
and how they can be used to derive Hill's lemma. We also

explained the concept of scale separation which is well described
by Hill–Mandel's theorem. In this subsection, we use the homo-
genization theory to describe the effective behavior of materials
embedding randomly distributed fractures. This description sum-
marizes the results of Eshelby [6], Mori and Tanaka [16] and
Benveniste [1], which are useful to develop our numerical
procedure.

Consider an elliptical inclusion within an infinite elastic
domain. A deformation Ea is imposed at the infinite boundaries
of the domain. According to Eshelby [6], the deformation within
the inclusion can be expressed as

ϵiðxÞ ¼ ðIþPiðxÞ : ðSi�SsÞÞ�1 : Ea ¼ ðI�EiÞ�1 : Ea ð7Þ
where Pi is Hill's tensor, Si is the stiffness tensor of the inclusion,
and Ss is the stiffness tensor of the solid matrix. Since the
inclusion is an empty pore space, Si is identically zero and Ei ¼Pi :

Ss Eshelby's tensor. Now consider multiple pores in an infinite
elastic space. Their interaction can be taken into account by
changing the boundary conditions at infinity. Within a RVE, the
micro–macro strain compatibility delivers the overall deforma-
tion:

E¼ ϵðxÞ ¼φsϵsþ∑
i
φiϵi ð8Þ

where φs is the volume fraction of the solid phase and φi is the
volume fraction of the ith inclusion. Substituting for ϵs ¼ Ea and ϵi
from Eq. (7) into Eq. (8) results in

Ea ¼ φsIþ∑
i
φiðI�EiÞ�1

 !�1

: E ð9Þ

The stress can be expressed as rðxÞ ¼Ss : ϵsðxÞ if x is within the
solid phase and rðxÞ ¼Si : ϵiðxÞ if not. Therefore, averaging over
the entire domain results in

Σ¼ 1
jΩj

Z
Ω
1sSs : ϵsðxÞ dΩþ∑

i

Z
Ω
1iSi : ϵiðxÞ dΩ¼φsSs : Ea ð10Þ

where 1s and 1i are characteristic functions of the different phases.
Therefore, it can be deduced that

Σ¼Shom : E ¼φsSs : As ¼φsSs : φsIþ∑
i
φiðI�EiÞ�1

 !�1

: E

ð11Þ
The above result is known as the Mori–Tanaka self-consistent
homogenization scheme [16,1].

2.3. Effective poroelastic properties

To obtain effective poroelastic properties, we consider that the
RVE is subjected to an overall deformation E and to an overall pore
pressure P which homogenizes the fluid pressure within the
porous medium. As suggested by Chateau and Dormieux [3], the
deformation can be expressed as follows:

ϵðxÞ ¼AðxÞ : E�AðxÞP ð12Þ
where A is a localization tensor. The stress tensor within the solid
phase can be expressed as follows:

rðxÞ ¼Ss : AðxÞ : E�Ss : AðxÞP ð13Þ
The macroscopic stress can be obtained by averaging as follows:

Σ¼ 1
jΩj

Z
Ωs

rðxÞ dΩþ
Z
Ωf

�P1 dΩ

 !
¼φsrs�Pφ1 ð14Þ

where φ¼ ð1�φsÞ. Substituting the expression of stress (13) into
Eq. (14) shows that

Σ¼Shom : E�BP ð15Þ
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