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a b s t r a c t

This paper presents a zeroth-order shear deformation theory for bending and vibration analyses of
functionally graded plates resting on elastic foundation. In the present theory, the shear deformation
effect is incorporated in the in-plane displacements through the use of shear forces instead of rotational
displacements as in existing shear deformation theories. Equations of motion and boundary conditions
are derived from Hamilton's principle. Analytical solutions of simply supported plates are presented, and
the obtained results are compared with available solutions to verify the accuracy of the present theory.
Numerical results show that the present theory gives a very good prediction of bending and vibration
responses of functionally graded plates resting on elastic foundation.

& 2013 Published by Elsevier Ltd.

1. Introduction

Functionally graded materials (FGMs) are a class of composites
that have continuous variation of material properties from one
surface to another and thus eliminate the stress concentration
found in laminated composites. A typical FGM is made from a
mixture of two material phases, for example, a ceramic and a
metal. The reason for the increasing use of FGMs in a variety of
aerospace, automotive, civil, and mechanical engineering struc-
tures is that their material properties can be tailored to different
applications and working environments [1]. To describe the inter-
action between the plate and foundation, several foundation
models have been proposed. The simplest one is the Winkler or
one-parameter model [2] which models the foundation as a series
of separated springs without coupling effects between each other.
This model was improved by Pasternak [3] by adding a shear
spring to simulate the interactions between the separated springs
in the Winkler model. The Pasternak or two-parameter model is
widely used to describe the mechanical behavior of structure–
foundation interactions and will be used here to simulate the
interactions between the plate and foundation.

Since the shear deformation effect is more pronounced in
FGMs, shear deformation theories should be used to analyze
functionally graded (FG) plates. The first-order shear deformation
theory (FSDT) developed by Mindlin [4] and Reissner [5] accounts
for the transverse shear deformation effect, but it violates the

traction-free boundary conditions on the top and bottom surfaces.
A shear correction factor is therefore required to compensate for
the difference between actual stress state and assumed constant
stress state [6,7]. To avoid the use of the shear correction factor
and obtain a better prediction of the transverse shear deformation
and normal strains in FG plates, higher-order shear deformation
plate theories (HSDTs) have been proposed. In general, HSDTs can
be developed based on higher-order variations of the in-plane
displacements [1,8–18] or both in-plane and transverse displace-
ments [19–31] (i.e. quasi-3D theories). However, HSDTs are highly
computational cost due to involving in many unknowns (e.g.,
theories by Neves et al. [27–29] with nine unknowns, Reddy [23]
with eleven unknowns, Jha et al. [31] with twelve unknowns,
Talha and Singh [21] and Natarajan and Manickam [24] with
thirteen unknowns). Thus, Shimpi [32] proposed a zeroth-order
shear deformation theory (ZSDT) which is simple to use.

The ZSDT accounts for the transverse shear deformation effect
through the use of shear forces instead of rotational displacements
as in existing shear deformation theories. The ZSDT contains the
same five unknowns as in the FSDT, but satisfies the traction-free
boundary conditions on the top and bottom surfaces of the plate
without requiring any shear correction factor. The ZSDT was first
developed by Shimpi [32] for isotropic plates and later extended
by Ray [33] for laminated composite plates, which predicts
accurate results for both isotropic and laminated composite plates.
Therefore, it seems to be important to extend this theory to FG
plates. In this paper, the ZSDT is extended and evaluated for FG
plates resting on elastic foundation. Material properties of FG
plates are assumed to vary according to a power law distribution
of the volume fraction of the constituents. Pasternak model is used
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simulate the interactions between the plate and elastic foundation.
Equations of motion and boundary conditions are derived from
Hamilton's principle. Closed-form solutions of simply supported
plates are presented. The obtained results are compared with the
existing solutions to verify the accuracy of present theory in
predicting the bending and vibration responses of FG plates.

2. Theoretical formulations

2.1. Kinematics

The displacement field of the ZSDT is chosen based on the
assumption that the transverse shear stresses vary parabolically
across the plate thickness and vanish on the plate surfaces, and
consequently, there is no need to use shear correction factor. Based
on this assumption, the following displacement field can be
obtained [32,33]
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where u, v, and w are the displacements of a point on the reference
plane in the x, y, and z directions, respectively; h is the plate
thickness; Qx and Qy are the transverse shear foreces; and λx and
λy are unknown constants determined based on the definition of
the transverse shear forces as

Qi ¼
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�h=2
siz dz; ði¼ x; yÞ ð2Þ

The nonzero linear strains associated with the displacement
field in Eq. (1) are:
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where f ¼ 3=2
� 	ðz=hÞ�2ðz=hÞ3 and g ¼ df =dz¼ ð3=2hÞð1�4ðz2=h2ÞÞ.

It is observed from Eqs. (3d) and (3e) that the transverse shear
strains ðγxz; γyzÞ vary parabolically across the plate thickness and
vanish at the plate surfaces ðz¼ 7h=2Þ, thus satisfying the traction
free conditions for transverse shear stresses ðsxz; syzÞ. In this
regard, it may be mentioned here that the theories proposed by
Reddy [1] and Thai and Choi [12] also account for parabolic
distribution of the transverse shear strains through the plate
thickness. However, these theories use rotational displacements
to account for the shear deformation effect whereas the ZSDT uses
the shear forces to account for the same (see Eqs. (3d) and (3e)). It
is worth noting that the transverse shear strain expressions in
Eqs. (3d) and (3e) do not explicitly contain the rotational
displacements due to the shear deformation effect. Hence, the
present theory may be called as a zeroth-order shear deformation
theory [33].

2.2. Constitutive equations

Consider FG plates made from a mixture of two material
phases, for example, a metal and a ceramic as shown in Fig. 1.
The properties of FG plate such as Young's modulus E and mass
density ρ are assumed to vary through the plate thickness with a
power law distribution of the volume fraction of the two materials
as

EðzÞ ¼ EmþðEc�EmÞ 1
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where the subscripts m and c represent the metallic and ceramic
constituents, respectively; and p is the power law index. The value
of p equal to zero represents a fully ceramic plate, whereas infinite
p indicates a fully metallic plate. Since the effects of the variation
of Poisson's ratio v on the response of FG plates are very small
[34,35], it is assumed to be constant for convenience. The linear
constitutive relations of a FG plate can be written as
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By substituting the expressions of the transverse shear strains
γxz and γyz into Eq. (5) and the subsequent results of transverse
shear stresses sxz and syz into Eq. (2), unknown constants λx and λy
are obtained as

λx ¼ λy ¼
Z h=2

�h=2

EðzÞ
2ð1þνÞg dz¼ 1
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2.3. Equations of motion

Hamilton's principle is used herein to derive the equations of
motion of the ZSDT for FG plates resting on elastic foundation. The
principle can be stated in analytical form as

0¼
Z T

0
ðδUPþδUFþδV�δKÞ dt ð7Þ

where δUP and δUF are the variations of strain energy of the plate
and foundation, respectively; δV is the variation of work done; and
δK is the variation of kinetic energy. The variation of strain energy
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Fig. 1. Geometry and coordinate of rectangular plate resting on elastic foundation.
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