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1. Introduction

Functionally graded materials (FGMs) are a
that have continuous variation of materi

found in laminated composites. A
mixture of two material phases,

ceramic and a
metal. The reason for the incre i

a variety of

g effects between each other.
This model was imp by Pasternak [3]| by adding a shear
spring to simulate the in tions between the separated springs
in the Winkler model. The Pasternak or two-parameter model is
widely used to describe the mechanical behavior of structure-
foundation interactions and will be used here to simulate the
interactions between the plate and foundation.

Since the shear deformation effect is more pronounced in
FGMs, shear deformation theories should be used to analyze
functionally graded (FG) plates. The first-order shear deformation
theory (FSDT) developed by Mindlin [4]| and Reissner [5] accounts
for the transverse shear deformation effect, but it violates the
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traction-free boundary conditions on the top and bottom surfaces.
A shear correction factor is therefore required to compensate for
the difference between actual stress state and assumed constant
stress state [6,7]. To avoid the use of the shear correction factor
and obtain a better prediction of the transverse shear deformation
and normal strains in FG plates, higher-order shear deformation
plate theories (HSDTs) have been proposed. In general, HSDTs can
be developed based on higher-order variations of the in-plane
displacements [1,8-18] or both in-plane and transverse displace-
ments [19-31] (i.e. quasi-3D theories). However, HSDTs are highly
computational cost due to involving in many unknowns (e.g.,
theories by Neves et al. [27-29] with nine unknowns, Reddy [23]
with eleven unknowns, Jha et al. [31] with twelve unknowns,
Talha and Singh [21] and Natarajan and Manickam [24] with
thirteen unknowns). Thus, Shimpi [32] proposed a zeroth-order
shear deformation theory (ZSDT) which is simple to use.

The ZSDT accounts for the transverse shear deformation effect
through the use of shear forces instead of rotational displacements
as in existing shear deformation theories. The ZSDT contains the
same five unknowns as in the FSDT, but satisfies the traction-free
boundary conditions on the top and bottom surfaces of the plate
without requiring any shear correction factor. The ZSDT was first
developed by Shimpi [32] for isotropic plates and later extended
by Ray [33] for laminated composite plates, which predicts
accurate results for both isotropic and laminated composite plates.
Therefore, it seems to be important to extend this theory to FG
plates. In this paper, the ZSDT is extended and evaluated for FG
plates resting on elastic foundation. Material properties of FG
plates are assumed to vary according to a power law distribution
of the volume fraction of the constituents. Pasternak model is used


www.sciencedirect.com/science/journal/00207403
www.elsevier.com/locate/ijmecsci
http://dx.doi.org/10.1016/j.ijmecsci.2013.09.020
http://dx.doi.org/10.1016/j.ijmecsci.2013.09.020
http://dx.doi.org/10.1016/j.ijmecsci.2013.09.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2013.09.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2013.09.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2013.09.020&domain=pdf
mailto:t.thai@unsw.edu.au
mailto:samga@hanyang.ac.kr
http://dx.doi.org/10.1016/j.ijmecsci.2013.09.020

36 H.-T. Thai, D.-H. Choi / International Journal of Mechanical Sciences 78 (2014) 35-43

Ceramic

Metal

L

X

K K

W s

Fig. 1. Geometry and coordinate of rectangular plate resting on elastic foundation.

simulate the interactions between the plate and elastic foundation.
Equations of motion and boundary conditions are derived from
Hamilton's principle. Closed-form solutions of simply supported
plates are presented. The obtained results are compared with the
existing solutions to verify the accuracy of present theory in
predicting the bending and vibration responses of FG plates.

2. Theoretical formulations
2.1. Kinematics

The displacement field of the ZSDT is chosen based on the
assumption that the transverse shear stresses vary parabolically
across the plate thickness and vanish on the plate surfaces, and
consequently, there is no need to use shear correction factor. Basg
on this assumption, the following displacement field can b
obtained [32,33]

Ui(X.y.2,0) = u(x,y, t)— za—"v+1 E<H)_2(H ’
S -2

where u, v, and w are the displacemen
plane in the x, y, and z directio
thickness; Q, and Q, are the tra
Ay are unknown constants det:
the transverse shear forces as

Ux(x,y,z,t) =v(x,y,t)—
us(x,y,z, t)y=w(x,y,t)
the plate

nd A, and
ed on the definition of
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The nonzero linear
field in Eq. (1) are:
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associated with the displacement

o= a0 o (33)
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where f = (3/2)(z/h)—2(z/h)* and g = df /dz = (3/2h)(1 — 4(z%/h?)).

It is observed from Eqs. (3d) and (3e) that the transverse shear
strains (y,;,7,,) vary parabolically across the plate thickness and
vanish at the plate surfaces (z= + h/2), thus satisfying the traction
free conditions for transverse shear stresses (ox;,0y,). In this
regard, it may be mentioned here that the theories proposed by
Reddy [1] and Thai and Choi [12] also account for parabolic
distribution of the transverse shear strains through the plate
thickness. However, these theories use rotational displacements
to account for the shear deformation effect whereas the ZSDT uses
the shear forces to account for the same (see Egs. (3d) and (3e)). It
is worth noting that the transverse shear strain expressions in
Egs. (3d) and (3e) do not explicitly contain the rotational
displacements due to the shear deformation effect. Hence, the
present theory may be called as a zeroth-order shear deformation
theory [33].

2.2. Constitutive equations

of two material
¢ as shown in Fig. 1.
g's modulus E and mass

phases, for example,
The properties of

d Cer.

2'h @

dicates a fully metallic plate. Since the effects of the variation
Poisson's ratio v on the response of FG plates are very small
4,35], it is assumed to be constant for convenience. The linear
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By substituting the expressions of the transverse shear strains
¥xz and y,, into Eq. (5) and the subsequent results of transverse
shear stresses oy, and oy, into Eq. (2), unknown constants 1, and 4,
are obtained as

P /W E@) 1 6(Ec —Em)
X=A = h2 2(1+y) 2+ P+2)(p+3)

©)

2.3. Equations of motion

Hamilton's principle is used herein to derive the equations of
motion of the ZSDT for FG plates resting on elastic foundation. The
principle can be stated in analytical form as

T
0= / (6Up + 68U + 6V —8K) dt )
0
where sUp and sUr are the variations of strain energy of the plate

and foundation, respectively; sV is the variation of work done; and
5K is the variation of kinetic energy. The variation of strain energy
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